Sort by:
Page 147 of 3453445 results

Multi channel fusion diffusion models for brain tumor MRI data augmentation.

Zuo C, Xue J, Yuan C

pubmed logopapersJul 2 2025
The early diagnosis of brain tumors is crucial for patient prognosis, and medical imaging techniques such as MRI and CT scans are essential tools for diagnosing brain tumors. However, high-quality medical image data for brain tumors is often scarce and difficult to obtain, which hinders the development and application of medical image analysis models. With the advancement of artificial intelligence, particularly deep learning technologies in the field of medical imaging, new concepts and tools have been introduced for the early diagnosis, treatment planning, and prognosis evaluation of brain tumors. To address the challenge of imbalanced brain tumor datasets, we propose a novel data augmentation technique based on a diffusion model, referred to as the Multi-Channel Fusion Diffusion Model(MCFDiffusion). This method tackles the issue of data imbalance by converting healthy brain MRI images into images containing tumors, thereby enabling deep learning models to achieve better performance and assisting physicians in making more accurate diagnoses and treatment plans. In our experiments, we used a publicly available brain tumor dataset and compared the performance of image classification and segmentation tasks between the original data and the data enhanced by our method. The results show that the enhanced data improved the classification accuracy by approximately 3% and the Dice coefficient for segmentation tasks by 1.5%-2.5%. Our research builds upon previous work involving Denoising Diffusion Implicit Models (DDIMs) for image generation and further enhances the applicability of this model in medical imaging by introducing a multi-channel approach and fusing defective areas with healthy images. Future work will explore the application of this model to various types of medical images and further optimize the model to improve its generalization capabilities. We release our code at https://github.com/feiyueaaa/MCFDiffusion.

Deep learning-based sex estimation of 3D hyoid bone models in a Croatian population using adapted PointNet++ network.

Jerković I, Bašić Ž, Kružić I

pubmed logopapersJul 2 2025
This study investigates a deep learning approach for sex estimation using 3D hyoid bone models derived from computed tomography (CT) scans of a Croatian population. We analyzed 202 hyoid samples (101 male, 101 female), converting CT-derived meshes into 2048-point clouds for processing with an adapted PointNet++ network. The model, optimized for small datasets with 1D convolutional layers and global size features, was first applied in an unsupervised framework. Unsupervised clustering achieved 87.10% accuracy, identifying natural sex-based morphological patterns. Subsequently, supervised classification with a support vector machine yielded an accuracy of 88.71% (Matthews Correlation Coefficient, MCC = 0.7746) on a test set (n = 62). Interpretability analysis highlighted key regions influencing classification, with males exhibiting larger, U-shaped hyoids and females showing smaller, more open structures. Despite the modest sample size, the method effectively captured sex differences, providing a data-efficient and interpretable tool. This flexible approach, combining computational efficiency with practical insights, demonstrates potential for aiding sex estimation in cases with limited skeletal remains and may support broader applications in forensic anthropology.

Multi-scale fusion semantic enhancement network for medical image segmentation.

Zhang Z, Xu C, Li Z, Chen Y, Nie C

pubmed logopapersJul 2 2025
The application of sophisticated computer vision techniques for medical image segmentation (MIS) plays a vital role in clinical diagnosis and treatment. Although Transformer-based models are effective at capturing global context, they are often ineffective at dealing with local feature dependencies. In order to improve this problem, we design a Multi-scale Fusion and Semantic Enhancement Network (MFSE-Net) for endoscopic image segmentation, which aims to capture global information and enhance detailed information. MFSE-Net uses a dual encoder architecture, with PVTv2 as the primary encoder to capture global features and CNNs as the secondary encoder to capture local details. The main encoder includes the LGDA (Large-kernel Grouped Deformable Attention) module for filtering noise and enhancing the semantic extraction of the four hierarchical features. The auxiliary encoder leverages the MLCF (Multi-Layered Cross-attention Fusion) module to integrate high-level semantic data from the deep CNN with fine spatial details from the shallow layers, enhancing the precision of boundaries and positioning. On the decoder side, we have introduced the PSE (Parallel Semantic Enhancement) module, which embeds the boundary and position information of the secondary encoder into the output characteristics of the backbone network. In the multi-scale decoding process, we also add SAM (Scale Aware Module) to recover global semantic information and offset for the loss of boundary details. Extensive experiments have shown that MFSE-Net overwhelmingly outperforms SOTA on the renal tumor and polyp datasets.

AI-driven genetic algorithm-optimized lung segmentation for precision in early lung cancer diagnosis.

Said Y, Ayachi R, Afif M, Saidani T, Alanezi ST, Saidani O, Algarni AD

pubmed logopapersJul 2 2025
Lung cancer remains the leading cause of cancer-related mortality worldwide, necessitating accurate and efficient diagnostic tools to improve patient outcomes. Lung segmentation plays a pivotal role in the diagnostic pipeline, directly impacting the accuracy of disease detection and treatment planning. This study presents an advanced AI-driven framework, optimized through genetic algorithms, for precise lung segmentation in early cancer diagnosis. The proposed model builds upon the UNET3 + architecture and integrates multi-scale feature extraction with enhanced optimization strategies to improve segmentation accuracy while significantly reducing computational complexity. By leveraging genetic algorithms, the framework identifies optimal neural network configurations within a defined search space, ensuring high segmentation performance with minimal parameters. Extensive experiments conducted on publicly available lung segmentation datasets demonstrated superior results, achieving a dice similarity coefficient of 99.17% with only 26% of the parameters required by the baseline UNET3 + model. This substantial reduction in model size and computational cost makes the system highly suitable for resource-constrained environments, including point-of-care diagnostic devices. The proposed approach exemplifies the transformative potential of AI in medical imaging, enabling earlier and more precise lung cancer diagnosis while reducing healthcare disparities in resource-limited settings.

Hybrid deep learning architecture for scalable and high-quality image compression.

Al-Khafaji M, Ramaha NTA

pubmed logopapersJul 2 2025
The rapid growth of medical imaging data presents challenges for efficient storage and transmission, particularly in clinical and telemedicine applications where image fidelity is crucial. This study proposes a hybrid deep learning-based image compression framework that integrates Stationary Wavelet Transform (SWT), Stacked Denoising Autoencoder (SDAE), Gray-Level Co-occurrence Matrix (GLCM), and K-means clustering. The framework enables multiresolution decomposition, texture-aware feature extraction, and adaptive region-based compression. A custom loss function that combines Mean Squared Error (MSE) and Structural Similarity Index (SSIM) ensures high perceptual quality and compression efficiency. The proposed model was evaluated across multiple benchmark medical imaging datasets and achieved a Peak Signal-to-Noise Ratio (PSNR) of up to 50.36 dB, MS-SSIM of 0.9999, and an encoding-decoding time of 0.065 s. These results demonstrate the model's capability to outperform existing approaches while maintaining diagnostic integrity, scalability, and speed, making it suitable for real-time and resource-constrained clinical environments.

Classifying and diagnosing Alzheimer's disease with deep learning using 6735 brain MRI images.

Mousavi SM, Moulaei K, Ahmadian L

pubmed logopapersJul 2 2025
Traditional diagnostic methods for Alzheimer's disease often suffer from low accuracy and lengthy processing times, delaying crucial interventions and patient care. Deep convolutional neural networks trained on MRI data can enhance diagnostic precision. This study aims to utilize deep convolutional neural networks (CNNs) trained on MRI data for Alzheimer's disease diagnosis and classification. In this study, the Alzheimer MRI Preprocessed Dataset was used, which includes 6735 brain structural MRI scan images. After data preprocessing and normalization, four models Xception, VGG19, VGG16 and InceptionResNetV2 were utilized. Generalization and hyperparameter tuning were applied to improve training. Early stopping and dynamic learning rate were used to prevent overfitting. Model performance was evaluated based on accuracy, F-score, recall, and precision. The InceptionResnetV2 model showed superior performance in predicting Alzheimer's patients with an accuracy, F-score, recall, and precision of 0.99. Then, the Xception model excelled in precision, recall, and F-score, with values of 0.97 and an accuracy of 96.89. Notably, InceptionResnetV2 and VGG19 demonstrated faster learning, reaching convergence sooner and requiring fewer training iterations than other models. The InceptionResNetV2 model achieved the highest performance, with precision, recall, and F-score of 100% for both mild and moderate dementia classes. The Xception model also performed well, attaining 100% for the moderate dementia class and 99-100% for the mild dementia class. Additionally, the VGG16 and VGG19 models showed strong results, with VGG16 reaching 100% precision, recall, and F-score for the moderate dementia class. Deep convolutional neural networks enhance Alzheimer's diagnosis, surpassing traditional methods with improved precision and efficiency. Models like InceptionResnetV2 show outstanding performance, potentially speeding up patient interventions.

Multi-scheme cross-level attention embedded U-shape transformer for MRI semantic segmentation.

Wang Q, Xue Y

pubmed logopapersJul 2 2025
Accurate MRI image segmentation is crucial for disease diagnosis, but current Transformer-based methods face two key challenges: limited capability to capture detailed information, leading to blurred boundaries and false localization, and the lack of MRI-specific embedding paradigms for attention modules, which limits their potential and representation capability. To address these challenges, this paper proposes a multi-scheme cross-level attention embedded U-shape Transformer (MSCL-SwinUNet). This model integrates cross-level spatial-wise attention (SW-Attention) to transfer detailed information from encoder to decoder, cross-stage channel-wise attention (CW-Attention) to filter out redundant features and enhance task-related channels, and multi-stage scale-wise attention (ScaleW-Attention) to adaptively process multi-scale features. Extensive experiments on the ACDC, MM-WHS and Synapse datasets demonstrate that the proposed MSCL-SwinUNet surpasses state-of-the-art methods in accuracy and generalizability. Visualization further confirms the superiority of our model in preserving detailed boundaries. This work not only advances Transformer-based segmentation in medical imaging but also provides new insights into designing MRI-specific attention embedding paradigms.Our code is available at https://github.com/waylans/MSCL-SwinUNet .

Optimizing the early diagnosis of neurological disorders through the application of machine learning for predictive analytics in medical imaging.

Sadu VB, Bagam S, Naved M, Andluru SKR, Ramineni K, Alharbi MG, Sengan S, Khadhar Moideen R

pubmed logopapersJul 2 2025
Early diagnosis of Neurological Disorders (ND) such as Alzheimer's disease (AD) and Brain Tumors (BT) can be highly challenging since these diseases cause minor changes in the brain's anatomy. Magnetic Resonance Imaging (MRI) is a vital tool for diagnosing and visualizing these ND; however, standard techniques contingent upon human analysis can be inaccurate, require a long-time, and detect early-stage symptoms necessary for effective treatment. Spatial Feature Extraction (FE) has been improved by Convolutional Neural Networks (CNN) and hybrid models, both of which are changes in Deep Learning (DL). However, these analysis methods frequently fail to accept temporal dynamics, which is significant for a complete test. The present investigation introduces the STGCN-ViT, a hybrid model that integrates CNN + Spatial-Temporal Graph Convolutional Networks (STGCN) + Vision Transformer (ViT) components to address these gaps. The model causes the reference to EfficientNet-B0 for FE in space, STGCN for FE in time, and ViT for FE using AM. By applying the Open Access Series of Imaging Studies (OASIS) and Harvard Medical School (HMS) benchmark datasets, the recommended approach proved effective in the investigations, with Group A attaining an accuracy of 93.56%, a precision of 94.41% and an Area under the Receiver Operating Characteristic Curve (AUC-ROC) score of 94.63%. Compared with standard and transformer-based models, the model attains better results for Group B, with an accuracy of 94.52%, precision of 95.03%, and AUC-ROC score of 95.24%. Those results support the model's use in real-time medical applications by providing proof of the probability of accurate but early-stage ND diagnosis.

Automatic detection of orthodontically induced external root resorption based on deep convolutional neural networks using CBCT images.

Xu S, Peng H, Yang L, Zhong W, Gao X

pubmed logopapersJul 2 2025
Orthodontically-induced external root resorption (OIERR) is among the most common risks in orthodontic treatment. Traditional OIERR diagnosis is limited by subjective judgement as well as cumbersome manual measurement. The research aims to develop an intelligent detection model for OIERR based on deep convolutional neural networks (CNNs) through cone-beam computed tomography (CBCT) images, thus providing auxiliary diagnosis support for orthodontists. Six pretrained CNN architectures were adopted and 1717 CBCT slices were used for training to construct OIERR detection models. The performance of the models was tested on 429 CBCT slices and the activated regions during decision-making were visualized through heatmaps. The model performance was then compared with that of two orthodontists. The EfficientNet-B1 model, trained through hold-out cross-validation, proved to be the most effective for detecting OIERR. Its accuracy, precision, sensitivity, specificity as well as F1-score were 0.97, 0.98, 0.97, 0.98 and 0.98, respectively. The metrics remarkably outperformed those of orthodontists, whose accuracy, recall and F1-score were 0.86, 0.78, and 0.87 respectively (P < 0.01). The heatmaps suggested that the OIERR detection model primarily relied on root features for decision-making. Automatic detection of OIERR through CNNs as well as CBCT images is both accurate and efficient. The method outperforms orthodontists and is anticipated to serve as a clinical tool for the rapid screening and diagnosis of OIERR.

A multi-modal graph-based framework for Alzheimer's disease detection.

Mashhadi N, Marinescu R

pubmed logopapersJul 2 2025
We propose a compositional graph-based Machine Learning (ML) framework for Alzheimer's disease (AD) detection that constructs complex ML predictors from modular components. In our directed computational graph, datasets are represented as nodes [Formula: see text], and deep learning (DL) models are represented as directed edges [Formula: see text], allowing us to model complex image-processing pipelines [Formula: see text] as end-to-end DL predictors. Each directed path in the graph functions as a DL predictor, supporting both forward propagation for transforming data representations, as well as backpropagation for model finetuning, saliency map computation, and input data optimization. We demonstrate our model on Alzheimer's disease prediction, a complex problem that requires integrating multimodal data containing scans of different modalities and contrasts, genetic data and cognitive tests. We built a graph of 11 nodes (data) and 14 edges (ML models), where each model has been trained on handling a specific task (e.g. skull-stripping MRI scans, AD detection,image2image translation, ...). By using a modular and adaptive approach, our framework effectively integrates diverse data types, handles distribution shifts, and scales to arbitrary complexity, offering a practical tool that remains accurate even when modalities are missing for advancing Alzheimer's disease diagnosis and potentially other complex medical prediction tasks.
Page 147 of 3453445 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.