Back to all papers

A multi-modal graph-based framework for Alzheimer's disease detection.

July 2, 2025pubmed logopapers

Authors

Mashhadi N,Marinescu R

Affiliations (2)

  • Department of Computer Science and Engineering, University of California, Santa Cruz, CA, USA.
  • Department of Computer Science and Engineering, University of California, Santa Cruz, CA, USA. [email protected].

Abstract

We propose a compositional graph-based Machine Learning (ML) framework for Alzheimer's disease (AD) detection that constructs complex ML predictors from modular components. In our directed computational graph, datasets are represented as nodes [Formula: see text], and deep learning (DL) models are represented as directed edges [Formula: see text], allowing us to model complex image-processing pipelines [Formula: see text] as end-to-end DL predictors. Each directed path in the graph functions as a DL predictor, supporting both forward propagation for transforming data representations, as well as backpropagation for model finetuning, saliency map computation, and input data optimization. We demonstrate our model on Alzheimer's disease prediction, a complex problem that requires integrating multimodal data containing scans of different modalities and contrasts, genetic data and cognitive tests. We built a graph of 11 nodes (data) and 14 edges (ML models), where each model has been trained on handling a specific task (e.g. skull-stripping MRI scans, AD detection,image2image translation, ...). By using a modular and adaptive approach, our framework effectively integrates diverse data types, handles distribution shifts, and scales to arbitrary complexity, offering a practical tool that remains accurate even when modalities are missing for advancing Alzheimer's disease diagnosis and potentially other complex medical prediction tasks.

Topics

Alzheimer DiseaseImage Processing, Computer-AssistedJournal Article

Ready to Sharpen Your Edge?

Subscribe to join 7,100+ peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.