Sort by:
Page 138 of 3453445 results

Artificial Intelligence-Assisted Standard Plane Detection in Hip Ultrasound for Developmental Dysplasia of the Hip: A Novel Real-Time Deep Learning Approach.

Darilmaz MF, Demirel M, Altun HO, Adiyaman MC, Bilgili F, Durmaz H, Sağlam Y

pubmed logopapersJul 6 2025
Developmental dysplasia of the hip (DDH) includes a range of conditions caused by inadequate hip joint development. Early diagnosis is essential to prevent long-term complications. Ultrasound, particularly the Graf method, is commonly used for DDH screening, but its interpretation is highly operator-dependent and lacks standardization, especially in identifying the correct standard plane. This variability often leads to misdiagnosis, particularly among less experienced users. This study presents AI-SPS, an AI-based instant standard plane detection software for real-time hip ultrasound analysis. Using 2,737 annotated frames, including 1,737 standard and 1,000 non-standard examples extracted from 45 clinical ultrasound videos, we trained and evaluated two object detection models: SSD-MobileNet V2 and YOLOv11n. The software was further validated on an independent set of 934 additional frames (347 standard and 587 non-standard) from the same video sources. YOLOv11n achieved an accuracy of 86.3%, precision of 0.78, recall of 0.88, and F1-score of 0.83, outperforming SSD-MobileNet V2, which reached an accuracy of 75.2%. These results indicate that AI-SPS can detect the standard plane with expert-level performance and improve consistency in DDH screening. By reducing operator variability, the software supports more reliable ultrasound assessments. Integration with live systems and Graf typing may enable a fully automated DDH diagnostic workflow. Level of Evidence: Level III, diagnostic study.

A CT-Based Deep Learning Radiomics Nomogram for Early Recurrence Prediction in Pancreatic Cancer: A Multicenter Study.

Guan X, Liu J, Xu L, Jiang W, Wang C

pubmed logopapersJul 6 2025
Early recurrence (ER) following curative-intent surgery remains a major obstacle to improving long-term outcomes in patients with pancreatic cancer (PC). The accurate preoperative prediction of ER could significantly aid clinical decision-making and guide postoperative management. A retrospective cohort of 493 patients with histologically confirmed PC who underwent resection was analyzed. Contrast-enhanced computed tomography (CT) images were used for tumor segmentation, followed by radiomics and deep learning feature extraction. In total, four distinct feature selection algorithms were employed. Predictive models were constructed using random forest (RF) and support vector machine (SVM) classifiers. The model performance was evaluated by the area under the receiver operating characteristic curve (AUC). A comprehensive nomogram integrating feature scores and clinical factors was developed and validated. Among all of the constructed models, the Inte-SVM demonstrated superior classification performance. The nomogram, incorporating the Inte-feature score, CT-assessed lymph node status, and carbohydrate antigen 19-9 (CA19-9), yielded excellent predictive accuracy in the validation cohort (AUC = 0.920). Calibration curves showed strong agreement between predicted and observed outcomes, and decision curve analysis confirmed the clinical utility of the nomogram. A CT-based deep learning radiomics nomogram enabled the accurate preoperative prediction of early recurrence in patients with pancreatic cancer. This model may serve as a valuable tool to assist clinicians in tailoring postoperative strategies and promoting personalized therapeutic approaches.

MRI-based detection of multiple sclerosis using an optimized attention-based deep learning framework.

Palaniappan R, Delshi Howsalya Devi R, Mathankumar M, Ilangovan K

pubmed logopapersJul 5 2025
Multiple Sclerosis (MS) is a chronic neurological disorder affecting millions worldwide. Early detection is vital to prevent long-term disability. Magnetic Resonance Imaging (MRI) plays a crucial role in MS diagnosis, yet differentiating MS lesions from other brain anomalies remains a complex challenge. To develop and evaluate a novel deep learning framework-2DRK-MSCAN-for the early and accurate detection of MS lesions using MRI data. The proposed approach is validated using three publicly available MRI-based brain tumor datasets and comprises three main stages. First, Gradient Domain Guided Filtering (GDGF) is applied during pre-processing to enhance image quality. Next, an EfficientNetV2L backbone embedded within a U-shaped encoder-decoder architecture facilitates precise segmentation and rich feature extraction. Finally, classification of MS lesions is performed using the 2DRK-MSCAN model, which incorporates deep diffusion residual kernels and multiscale snake convolutional attention mechanisms to improve detection accuracy and robustness. The proposed framework achieved 99.9% accuracy in cross-validation experiments, demonstrating its capability to distinguish MS lesions from other anomalies with high precision. The 2DRK-MSCAN framework offers a reliable and effective solution for early MS detection using MRI. While clinical validation is ongoing, the method shows promising potential for aiding timely intervention and improving patient care.

Quantifying features from X-ray images to assess early stage knee osteoarthritis.

Helaly T, Faisal TR, Moni ASB, Naznin M

pubmed logopapersJul 5 2025
Knee osteoarthritis (KOA) is a progressive degenerative joint disease and a leading cause of disability worldwide. Manual diagnosis of KOA from X-ray images is subjective and prone to inter- and intra-observer variability, making early detection challenging. While deep learning (DL)-based models offer automation, they often require large labeled datasets, lack interpretability, and do not provide quantitative feature measurements. Our study presents an automated KOA severity assessment system that integrates a pretrained DL model with image processing techniques to extract and quantify key KOA imaging biomarkers. The pipeline includes contrast limited adaptive histogram equalization (CLAHE) for contrast enhancement, DexiNed-based edge extraction, and thresholding for noise reduction. We design customized algorithms that automatically detect and quantify joint space narrowing (JSN) and osteophytes from the extracted edges. The proposed model quantitatively assesses JSN and finds the number of intercondylar osteophytes, contributing to severity classification. The system achieves accuracies of 88% for JSN detection, 80% for osteophyte identification, and 73% for KOA classification. Its key strength lies in eliminating the need for any expensive training process and, consequently, the dependency on labeled data except for validation. Additionally, it provides quantitative data that can support classification in other OA grading frameworks.

Early warning and stratification of the elderly cardiopulmonary dysfunction-related diseases: multicentre prospective study protocol.

Zhou X, Jin Q, Xia Y, Guan Y, Zhang Z, Guo Z, Liu Z, Li C, Bai Y, Hou Y, Zhou M, Liao WH, Lin H, Wang P, Liu S, Fan L

pubmed logopapersJul 5 2025
In China, there is a lack of standardised clinical imaging databases for multidimensional evaluation of cardiopulmonary diseases. To address this gap, this study protocol launched a project to build a clinical imaging technology integration and a multicentre database for early warning and stratification of cardiopulmonary dysfunction in the elderly. This study employs a cross-sectional design, enrolling over 6000 elderly participants from five regions across China to evaluate cardiopulmonary function and related diseases. Based on clinical criteria, participants are categorized into three groups: a healthy cardiopulmonary function group, a functional decrease group and an established cardiopulmonary diseases group. All subjects will undergo comprehensive assessments including chest CT scans, echocardiography, and laboratory examinations. Additionally, at least 50 subjects will undergo cardiopulmonary exercise testing (CPET). By leveraging artificial intelligence technology, multimodal data will be integrated to establish reference ranges for cardiopulmonary function in the elderly population, as well as to develop early-warning models and severity grading standard models. The study has been approved by the local ethics committee of Shanghai Changzheng Hospital (approval number: 2022SL069A). All the participants will sign the informed consent. The results will be disseminated through peer-reviewed publications and conferences.

Artifact-robust Deep Learning-based Segmentation of 3D Phase-contrast MR Angiography: A Novel Data Augmentation Approach.

Tamada D, Oechtering TH, Heidenreich JF, Starekova J, Takai E, Reeder SB

pubmed logopapersJul 5 2025
This study presents a novel data augmentation approach to improve deep learning (DL)-based segmentation for 3D phase-contrast magnetic resonance angiography (PC-MRA) images affected by pulsation artifacts. Augmentation was achieved by simulating pulsation artifacts through the addition of periodic errors in k-space magnitude. The approach was evaluated on PC-MRA datasets from 16 volunteers, comparing DL segmentation with and without pulsation artifact augmentation to a level-set algorithm. Results demonstrate that DL methods significantly outperform the level-set approach and that pulsation artifact augmentation further improves segmentation accuracy, especially for images with lower velocity encoding. Quantitative analysis using Dice-Sørensen coefficient, Intersection over Union, and Average Symmetric Surface Distance metrics confirms the effectiveness of the proposed method. This technique shows promise for enhancing vascular segmentation in various anatomical regions affected by pulsation artifacts, potentially improving clinical applications of PC-MRA.

A novel recursive transformer-based U-Net architecture for enhanced multi-scale medical image segmentation.

Li S, Liu X, Fu M, Khelifi F

pubmed logopapersJul 5 2025
Automatic medical image segmentation techniques are vital for assisting clinicians in making accurate diagnoses and treatment plans. Although the U-shaped network (U-Net) has been widely adopted in medical image analysis, it still faces challenges in capturing long-range dependencies, particularly in complex and textured medical images where anatomical structures often blend into the surrounding background. To address these limitations, a novel network architecture, called recursive transformer-based U-Net (ReT-UNet), which integrates recursive feature learning and transformer technology, is proposed. One of the key innovations of ReT-UNet is the multi-scale global feature fusion (Multi-GF) module, inspired by transformer models and multi-scale pooling mechanisms. This module captures long-range dependencies, enhancing the abstraction and contextual understanding of multi-level features. Additionally, a recursive feature accumulation block is introduced to iteratively update features across layers, improving the network's ability to model spatial correlations and represent deep features in medical images. To improve sensitivity to local details, a lightweight atrous spatial pyramid pooling (ASPP) module is appended after the Multi-GF module. Furthermore, the segmentation head is redesigned to emphasize feature aggregation and fusion. During the encoding phase, a hybrid pooling layer is employed to ensure comprehensive feature sampling, thereby enabling a broader range of feature representation and improving detailed information learning. Results: The proposed method has been evaluated through ablation experiments, demonstrating generally consistent performance across multiple trials. When applied to cardiac, pulmonary nodule, and polyp segmentation datasets, the method showed a reduction in mis-segmented regions. The experimental results suggest that the approach can improve segmentation accuracy and stability compared to competing state-of-the-art methods. Experimental findings highlight the superiority of the proposed ReT-UNet over related methods and demonstrate its potential for applications in medical image segmentation.

Improving prediction of fragility fractures in postmenopausal women using random forest.

Mateo J, Usategui-Martín R, Torres AM, Campillo-Sánchez F, de Temiño ÁR, Gil J, Martín-Millán M, Hernandez JL, Pérez-Castrillón JL

pubmed logopapersJul 5 2025
Osteoporosis is a chronic disease characterized by a progressive decline in bone density and quality, leading to increased bone fragility and a higher susceptibility to fractures, even in response to minimal trauma. Osteoporotic fractures represent a major source of morbidity and mortality among postmenopausal women. This condition poses both clinical and societal challenges, as its consequences include a significant reduction in quality of life, prolonged dependency, and a substantial increase in healthcare costs. Therefore, the development of reliable tools for predicting fracture risk is essential for the effective management of affected patients. In this study, we developed a predictive model based on the Random Forest (RF) algorithm for risk stratification of fragility fractures, integrating clinical, demographic, and imaging variables derived from dual-energy X-ray absorptiometry (DXA) and 3D modeling. Two independent cohorts were analyzed: the HURH cohort and the Camargo cohort, enabling both internal and external validation of the model. The results showed that the RF model consistently outperformed other classification algorithms, including k-nearest neighbors (KNN), support vector machines (SVM), decision trees (DT), and Gaussian naive Bayes (GNB), demonstrating high accuracy, sensitivity, specificity, area under the ROC curve (AUC), and Matthews correlation coefficient (MCC). Additionally, variable importance analysis highlighted that previous fracture history, parathyroid hormone (PTH) levels, and lumbar spine T-score, along with other densitometric parameters, were key predictors of fracture risk. These findings suggest that the integration of advanced machine learning techniques with clinical and imaging data can optimize early identification of high-risk patients, enabling personalized preventive strategies and improving the clinical management of osteoporosis.

PGMI assessment in mammography: AI software versus human readers.

Santner T, Ruppert C, Gianolini S, Stalheim JG, Frei S, Hondl M, Fröhlich V, Hofvind S, Widmann G

pubmed logopapersJul 5 2025
The aim of this study was to evaluate human inter-reader agreement of parameters included in PGMI (perfect-good-moderate-inadequate) classification of screening mammograms and explore the role of artificial intelligence (AI) as an alternative reader. Five radiographers from three European countries independently performed a PGMI assessment of 520 anonymized mammography screening examinations randomly selected from representative subsets from 13 imaging centres within two European countries. As a sixth reader, a dedicated AI software was used. Accuracy, Cohen's Kappa, and confusion matrices were calculated to compare the predictions of the software against the individual assessment of the readers, as well as potential discrepancies between them. A questionnaire and a personality test were used to better understand the decision-making processes of the human readers. Significant inter-reader variability among human readers with poor to moderate agreement (κ = -0.018 to κ = 0.41) was observed, with some showing more homogenous interpretations of single features and overall quality than others. In comparison, the software surpassed human inter-reader agreement in detecting glandular tissue cuts, mammilla deviation, pectoral muscle detection, and pectoral angle measurement, while remaining features and overall image quality exhibited comparable performance to human assessment. Notably, human inter-reader disagreement of PGMI assessment in mammography is considerably high. AI software may already reliably categorize quality. Its potential for standardization and immediate feedback to achieve and monitor high levels of quality in screening programs needs further attention and should be included in future approaches. AI has promising potential for automated assessment of diagnostic image quality. Faster, more representative and more objective feedback may support radiographers in their quality management processes. Direct transformation of common PGMI workflows into an AI algorithm could be challenging.

Unveiling knee morphology with SHAP: shaping personalized medicine through explainable AI.

Cansiz B, Arslan S, Gültekin MZ, Serbes G

pubmed logopapersJul 5 2025
This study aims to enhance personalized medical assessments and the early detection of knee-related pathologies by examining the relationship between knee morphology and demographic factors such as age, gender, and body mass index. Additionally, gender-specific reference values for knee morphological features will be determined using explainable artificial intelligence (XAI). A retrospective analysis was conducted on the MRI data of 500 healthy knees aged 20-40 years. The study included various knee morphological features such as Distal Femoral Width (DFW), Lateral Femoral Condyler Width (LFCW), Intercondylar Femoral Width (IFW), Anterior Cruciate Ligament Width (ACLW), and Anterior Cruciate Ligament Length (ACLL). Machine learning models, including Decision Trees, Random Forests, Light Gradient Boosting, Multilayer Perceptron, and Support Vector Machines, were employed to predict gender based on these features. The SHapley Additive exPlanation was used to analyze feature importance. The learning models demonstrated high classification performance, with 83.2% (±5.15) for classification of clusters based on morphological feature and 88.06% (±4.8) for gender classification. These results validated that the strong correlation between knee morphology and gender. The study found that DFW is the most significant feature for gender prediction, with values below 78-79 mm range indicating females and values above this range indicating males. LFCW, IFW, ACLW, and ACLL also showed significant gender-based differences. The findings establish gender-specific reference values for knee morphological features, highlighting the impact of gender on knee morphology. These reference values can improve the accuracy of diagnoses and treatment plans tailored to each gender, enhancing personalized medical care.
Page 138 of 3453445 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.