Ultrasound image-based contrastive fusion non-invasive liver fibrosis staging algorithm.
Authors
Affiliations (3)
Affiliations (3)
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China.
- Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China. [email protected].
Abstract
The diagnosis of liver fibrosis is usually based on histopathological examination of liver puncture specimens. Although liver puncture is accurate, it has invasive risks and high economic costs, which are difficult for some patients to accept. Therefore, this study uses deep learning technology to build a liver fibrosis diagnosis model to achieve non-invasive staging of liver fibrosis, avoid complications, and reduce costs. This study uses ultrasound examination to obtain pure liver parenchyma image section data. With the consent of the patient, combined with the results of percutaneous liver puncture biopsy, the degree of liver fibrosis indicated by ultrasound examination data is judged. The concept of Fibrosis Contrast Layer (FCL) is creatively introduced in our experimental method, which can help our model more keenly capture the significant differences in the characteristics of liver fibrosis of various grades. Finally, through label fusion (LF), the characteristics of liver specimens of the same fibrosis stage are abstracted and fused to improve the accuracy and stability of the diagnostic model. Experimental evaluation demonstrated that our model achieved an accuracy of 85.6%, outperforming baseline models such as ResNet (81.9%), InceptionNet (80.9%), and VGG (80.8%). Even under a small-sample condition (30% data), the model maintained an accuracy of 84.8%, significantly outperforming traditional deep-learning models exhibiting sharp performance declines. The training results show that in the whole sample data set and 30% small sample data set training environments, the FCLLF model's test performance results are better than those of traditional deep learning models such as VGG, ResNet, and InceptionNet. The performance of the FCLLF model is more stable, especially in the small sample data set environment. Our proposed FCLLF model effectively improves the accuracy and stability of liver fibrosis staging using non-invasive ultrasound imaging.