Sort by:
Page 130 of 1981980 results

Dental practitioners versus artificial intelligence software in assessing alveolar bone loss using intraoral radiographs.

Almarghlani A, Fakhri J, Almarhoon A, Ghonaim G, Abed H, Sharka R

pubmed logopapersJun 1 2025
Integrating artificial intelligence (AI) in the dental field can potentially enhance the efficiency of dental care. However, few studies have investigated whether AI software can achieve results comparable to those obtained by dental practitioners (general practitioners (GPs) and specialists) when assessing alveolar bone loss in a clinical setting. Thus, this study compared the performance of AI in assessing periodontal bone loss with those of GPs and specialists. This comparative cross-sectional study evaluated the performance of dental practitioners and AI software in assessing alveolar bone loss. Radiographs were randomly selected to ensure representative samples. Dental practitioners independently evaluated the radiographs, and the AI software "Second Opinion Software" was tested using the same set of radiographs evaluated by the dental practitioners. The results produced by the AI software were then compared with the baseline values to measure their accuracy and allow direct comparison with the performance of human specialists. The survey received 149 responses, where each answered 10 questions to compare the measurements made by AI and dental practitioners when assessing the amount of bone loss radiographically. The mean estimates of the participants had a moderate positive correlation with the radiographic measurements (rho = 0.547, <i>p</i> < 0.001) and a weaker but still significant correlation with AI measurements (rho = 0.365, <i>p</i> < 0.001). AI measurements had a stronger positive correlation with the radiographic measurements (rho = 0.712, <i>p</i> < 0.001) compared with their correlation with the estimates of dental practitioners. This study highlights the capacity of AI software to enhance the accuracy and efficiency of radiograph-based evaluations of alveolar bone loss. Dental practitioners are vital for the clinical experience but AI technology provides a consistent and replicable methodology. Future collaborations between AI experts, researchers, and practitioners could potentially optimize patient care.

AO Spine Clinical Practice Recommendations for Diagnosis and Management of Degenerative Cervical Myelopathy: Evidence Based Decision Making - A Review of Cutting Edge Recent Literature Related to Degenerative Cervical Myelopathy.

Fehlings MG, Evaniew N, Ter Wengel PV, Vedantam A, Guha D, Margetis K, Nouri A, Ahmed AI, Neal CJ, Davies BM, Ganau M, Wilson JR, Martin AR, Grassner L, Tetreault L, Rahimi-Movaghar V, Marco R, Harrop J, Guest J, Alvi MA, Pedro KM, Kwon BK, Fisher CG, Kurpad SN

pubmed logopapersJun 1 2025
Study DesignLiterature review of key topics related to degenerative cervical myelopathy (DCM) with critical appraisal and clinical recommendations.ObjectiveThis article summarizes several key current topics related to the management of DCM.MethodsRecent literature related to the management of DCM was reviewed. Four articles were selected and critically appraised. Recommendations were graded as Strong or Conditional.ResultsArticle 1: The Relationship Between pre-operative MRI Signal Intensity and outcomes. <b>Conditional</b> recommendation to use diffusion-weighted imaging MR signal changes in the cervical cord to evaluate prognosis following surgical intervention for DCM. Article 2: Efficacy and Safety of Surgery for Mild DCM. <b>Conditional</b> recommendation that surgery is a valid option for mild DCM with favourable clinical outcomes. Article 3: Effect of Ventral vs Dorsal Spinal Surgery on Patient-Reported Physical Functioning in Patients With Cervical Spondylotic Myelopathy: A Randomized Clinical Trial. <b>Strong</b> recommendation that there is equipoise in the outcomes of anterior vs posterior surgical approaches in cases where either technique could be used. Article 4: Machine learning-based cluster analysis of DCM phenotypes. <b>Conditional</b> recommendation that clinicians consider pain, medical frailty, and the impact on health-related quality of life when counselling patients.ConclusionsDCM requires a multidimensional assessment including neurological dysfunction, pain, impact on health-related quality of life, medical frailty and MR imaging changes in the cord. Surgical treatment is effective and is a valid option for mild DCM. In patients where either anterior or posterior surgical approaches can be used, both techniques afford similar clinical benefit albeit with different complication profiles.

Enhancing diagnostic accuracy of thyroid nodules: integrating self-learning and artificial intelligence in clinical training.

Kim D, Hwang YA, Kim Y, Lee HS, Lee E, Lee H, Yoon JH, Park VY, Rho M, Yoon J, Lee SE, Kwak JY

pubmed logopapersJun 1 2025
This study explores a self-learning method as an auxiliary approach in residency training for distinguishing between benign and malignant thyroid nodules. Conducted from March to December 2022, internal medicine residents underwent three repeated learning sessions with a "learning set" comprising 3000 thyroid nodule images. Diagnostic performances for internal medicine residents were assessed before the study, after every learning session, and for radiology residents before and after one-on-one education, using a "test set," comprising 120 thyroid nodule images. Finally, all residents repeated the same test using artificial intelligence computer-assisted diagnosis (AI-CAD). Twenty-one internal medicine and eight radiology residents participated. Initially, internal medicine residents had a lower area under the receiver operating characteristic curve (AUROC) than radiology residents (0.578 vs. 0.701, P < 0.001), improving post-learning (0.578 to 0.709, P < 0.001) to a comparable level with radiology residents (0.709 vs. 0.735, P = 0.17). Further improvement occurred with AI-CAD for both group (0.709 to 0.755, P < 0.001; 0.735 to 0.768, P = 0.03). The proposed iterative self-learning method using a large volume of ultrasonographic images can assist beginners, such as residents, in thyroid imaging to differentiate benign and malignant thyroid nodules. Additionally, AI-CAD can improve the diagnostic performance across varied levels of experience in thyroid imaging.

Multimodal Artificial Intelligence Using Endoscopic USG, CT, and MRI to Differentiate Between Serous and Mucinous Cystic Neoplasms.

Seza K, Tawada K, Kobayashi A, Nakamura K

pubmed logopapersJun 1 2025
Introduction Serous cystic neoplasms (SCN) and mucinous cystic neoplasms (MCN) often exhibit similar imaging features when evaluated with a single imaging modality. Differentiating between SCN and MCN typically necessitates the utilization of multiple imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), and endoscopic ultrasonography (EUS). Recent research indicates that artificial intelligence (AI) can effectively distinguish between SCN and MCN using single-modal imaging. Despite these advancements, the diagnostic performance of AI has not yet reached an optimal level. This study compares the efficacy of AI in classifying SCN and MCN using multimodal imaging versus single-modal imaging. The objective was to assess the effectiveness of AI utilizing multimodal imaging with EUS, CT, and MRI to classify these two types of pancreatic cysts. Methods We retrospectively gathered data from 25 patients with surgically confirmed SCN and 24 patients with surgically confirmed MCN as part of a multicenter study. Imaging was conducted using four modalities: EUS, early-phase contrast-enhanced abdominal CT, T2-weighted MRI, and magnetic resonance pancreatography. Four images per modality were obtained for each tumor. Data augmentation techniques were utilized, resulting in a final dataset of 39,200 images per modality. An AI model with ResNet was employed to categorize the cysts as SCN or MCN, incorporating clinical features and combinations of imaging modalities (single, double, triple, and all four modalities). The classification outcomes were compared with those of five experienced gastroenterologists with over 10 years of experience. The comparison is based on three performance metrics: sensitivity, specificity, and accuracy. Results For AI utilizing a single imaging modality, the sensitivity, specificity, and accuracy were 87.0%, 92.7%, and 90.8%, respectively. Combining two imaging modalities improved the sensitivity, specificity, and accuracy to 95.3%, 95.1%, and 94.9%. With three modalities, AI achieved a sensitivity of 96.0%, a specificity of 99.0%, and an accuracy of 97.0%. Ultimately, employing all four imaging modalities resulted in AI achieving 98.0% sensitivity, 100% specificity, and 99.0% accuracy. In contrast, experts utilizing all four modalities attained a sensitivity of 78.0%, specificity of 82.0%, and accuracy of 81.0%. The AI models consistently outperformed the experts across all metrics. A continuous enhancement in performance was observed with each additional imaging modality, with AI utilizing three and four modalities significantly surpassing single-modal imaging AI. Conclusion AI utilizing multimodal imaging offers better performance compared to both single-modal imaging AI and experienced human experts in classifying SCN and MCN.

Deep Learning in Digital Breast Tomosynthesis: Current Status, Challenges, and Future Trends.

Wang R, Chen F, Chen H, Lin C, Shuai J, Wu Y, Ma L, Hu X, Wu M, Wang J, Zhao Q, Shuai J, Pan J

pubmed logopapersJun 1 2025
The high-resolution three-dimensional (3D) images generated with digital breast tomosynthesis (DBT) in the screening of breast cancer offer new possibilities for early disease diagnosis. Early detection is especially important as the incidence of breast cancer increases. However, DBT also presents challenges in terms of poorer results for dense breasts, increased false positive rates, slightly higher radiation doses, and increased reading times. Deep learning (DL) has been shown to effectively increase the processing efficiency and diagnostic accuracy of DBT images. This article reviews the application and outlook of DL in DBT-based breast cancer screening. First, the fundamentals and challenges of DBT technology are introduced. The applications of DL in DBT are then grouped into three categories: diagnostic classification of breast diseases, lesion segmentation and detection, and medical image generation. Additionally, the current public databases for mammography are summarized in detail. Finally, this paper analyzes the main challenges in the application of DL techniques in DBT, such as the lack of public datasets and model training issues, and proposes possible directions for future research, including large language models, multisource domain transfer, and data augmentation, to encourage innovative applications of DL in medical imaging.

Implementation costs and cost-effectiveness of ultraportable chest X-ray with artificial intelligence in active case finding for tuberculosis in Nigeria.

Garg T, John S, Abdulkarim S, Ahmed AD, Kirubi B, Rahman MT, Ubochioma E, Creswell J

pubmed logopapersJun 1 2025
Availability of ultraportable chest x-ray (CXR) and advancements in artificial intelligence (AI)-enabled CXR interpretation are promising developments in tuberculosis (TB) active case finding (ACF) but costing and cost-effectiveness analyses are limited. We provide implementation cost and cost-effectiveness estimates of different screening algorithms using symptoms, CXR and AI in Nigeria. People 15 years and older were screened for TB symptoms and offered a CXR with AI-enabled interpretation using qXR v3 (Qure.ai) at lung health camps. Sputum samples were tested on Xpert MTB/RIF for individuals reporting symptoms or with qXR abnormality scores ≥0.30. We conducted a retrospective costing using a combination of top-down and bottom-up approaches while utilizing itemized expense data from a health system perspective. We estimated costs in five screening scenarios: abnormality score ≥0.30 and ≥0.50; cough ≥ 2 weeks; any symptom; abnormality score ≥0.30 or any symptom. We calculated total implementation costs, cost per bacteriologically-confirmed case detected, and assessed cost-effectiveness using incremental cost-effectiveness ratio (ICER) as additional cost per additional case. Overall, 3205 people with presumptive TB were identified, 1021 were tested, and 85 people with bacteriologically-confirmed TB were detected. Abnormality ≥ 0.30 or any symptom (US$65704) had the highest costs while cough ≥ 2 weeks was the lowest (US$40740). The cost per case was US$1198 for cough ≥ 2 weeks, and lowest for any symptom (US$635). Compared to baseline strategy of cough ≥ 2 weeks, the ICER for any symptom was US$191 per additional case detected and US$ 2096 for Abnormality ≥0.30 OR any symptom algorithm. Using CXR and AI had lower cost per case detected than any symptom screening criteria when asymptomatic TB was higher than 30% of all bacteriologically-confirmed TB detected. Compared to traditional symptom screening, using CXR and AI in combination with symptoms detects more cases at lower cost per case detected and is cost-effective. TB programs should explore adoption of CXR and AI for screening in ACF.

Efficient slice anomaly detection network for 3D brain MRI Volume.

Zhang Z, Mohsenzadeh Y

pubmed logopapersJun 1 2025
Current anomaly detection methods excel with benchmark industrial data but struggle with natural images and medical data due to varying definitions of 'normal' and 'abnormal.' This makes accurate identification of deviations in these fields particularly challenging. Especially for 3D brain MRI data, all the state-of-the-art models are reconstruction-based with 3D convolutional neural networks which are memory-intensive, time-consuming and producing noisy outputs that require further post-processing. We propose a framework called Simple Slice-based Network (SimpleSliceNet), which utilizes a model pre-trained on ImageNet and fine-tuned on a separate MRI dataset as a 2D slice feature extractor to reduce computational cost. We aggregate the extracted features to perform anomaly detection tasks on 3D brain MRI volumes. Our model integrates a conditional normalizing flow to calculate log likelihood of features and employs the contrastive loss to enhance anomaly detection accuracy. The results indicate improved performance, showcasing our model's remarkable adaptability and effectiveness when addressing the challenges exists in brain MRI data. In addition, for the large-scale 3D brain volumes, our model SimpleSliceNet outperforms the state-of-the-art 2D and 3D models in terms of accuracy, memory usage and time consumption. Code is available at: https://github.com/Jarvisarmy/SimpleSliceNet.

Axial Skeletal Assessment in Osteoporosis Using Radiofrequency Echographic Multi-spectrometry: Diagnostic Performance, Clinical Utility, and Future Directions.

As'ad M

pubmed logopapersJun 1 2025
Osteoporosis, a prevalent skeletal disorder, necessitates accurate and accessible diagnostic tools for effective disease management and fracture prevention. While dual-energy X-ray absorptiometry (DXA) remains the clinical standard for bone mineral density (BMD) assessment, its limitations, including ionizing radiation exposure and susceptibility to artifacts, underscore the need for alternative technologies. Ultrasound-based methods have emerged as promising radiation-free alternatives, with radiofrequency echographic multi-spectrometry (REMS) representing a significant advancement in axial skeleton assessment, specifically at the lumbar spine and proximal femur. REMS analyzes unfiltered radiofrequency ultrasound signals, providing not only BMD estimates but also a novel fragility score (FS), which reflects bone quality and microarchitectural integrity. This review critically evaluates the underlying principles, diagnostic performance, and clinical applications of REMS. It compares REMS with DXA, quantitative computed tomography (QCT), and trabecular bone score (TBS), highlighting REMS's potential advantages in artifact-prone scenarios and specific populations, including children and patients with secondary osteoporosis. The clinical utility of REMS in fracture risk prediction and therapy monitoring is explored alongside its operational precision, cost-effectiveness, and portability. In addition, the integration of artificial intelligence (AI) within REMS software has enhanced its capacity for artifact exclusion and automated spectral interpretation, improving usability and reproducibility. Current limitations, such as the need for broader validation and guideline inclusion, are identified, and future research directions are proposed. These include multicenter validation studies, development of pediatric and secondary osteoporosis reference models, and deeper evaluation of AI-driven enhancements. REMS offers a compelling, non-ionizing alternative for axial bone health assessment and may significantly advance the diagnostic landscape for osteoporosis care.

Diagnostic Performance of ChatGPT-4o in Detecting Hip Fractures on Pelvic X-rays.

Erdem TE, Kirilmaz A, Kekec AF

pubmed logopapersJun 1 2025
Hip fractures are a major orthopedic problem, especially in the elderly population. Hip fractures are usually diagnosed by clinical evaluation and imaging, especially X-rays. In recent years, new approaches to fracture detection have emerged with the use of artificial intelligence (AI) and deep learning techniques in medical imaging. In this study, we aimed to evaluate the diagnostic performance of ChatGPT-4o, an artificial intelligence model, in diagnosing hip fractures. A total of 200 anteroposterior pelvic X-ray images were retrospectively analyzed. Half of the images belonged to patients with surgically confirmed hip fractures, including both displaced and non-displaced types, while the other half represented patients with soft tissue trauma and no fractures. Each image was evaluated by ChatGPT-4o through a standardized prompt, and its predictions (fracture vs. no fracture) were compared against the gold standard diagnoses. Diagnostic performance metrics such as sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), receiver operating characteristic (ROC) curve, Cohen's kappa, and F1 score were calculated. ChatGPT-4o demonstrated an overall accuracy of 82.5% in detecting hip fractures on pelvic radiographs, with a sensitivity of 78.0% and specificity of 87.0%. PPVs and NPVs were 85.7% and 79.8%, respectively. The area under the ROC curve (AUC) was 0.825, indicating good discriminative performance. Among 22 false-negative cases, 68.2% were non-displaced fractures, suggesting the model had greater difficulty identifying subtle radiographic findings. Cohen's kappa coefficient was 0.65, showing substantial agreement with actual diagnoses. Chi-square analysis revealed a strong correlation (χ² = 82.59, <i>P</i> < 0.001), while McNemar's test (<i>P</i> = 0.176) showed no significant asymmetry in error distribution. ChatGPT-4o shows promising accuracy in identifying hip fractures on pelvic X-rays, especially when fractures are displaced. However, its sensitivity drops significantly for non-displaced fractures, leading to many false negatives. This highlights the need for caution when interpreting negative AI results, particularly when clinical suspicion remains high. While not a replacement for expert assessment, ChatGPT-4o may assist in settings with limited specialist access.

Development and validation of a combined clinical and MRI-based biomarker model to differentiate mild cognitive impairment from mild Alzheimer's disease.

Hosseini Z, Mohebbi A, Kiani I, Taghilou A, Mohammadjafari A, Aghamollaii V

pubmed logopapersJun 1 2025
Two of the most common complaints seen in neurology clinics are Alzheimer's disease (AD) and mild cognitive impairment (MCI), characterized by similar symptoms. The aim of this study was to develop and internally validate the diagnostic value of combined neurological and radiological predictors in differentiating mild AD from MCI as the outcome variable, which helps in preventing AD development. A cross-sectional study of 161 participants was conducted in a general healthcare setting, including 30 controls, 71 mild AD, and 60 MCI. Binary logistic regression was used to identify predictors of interest, with collinearity assessment conducted prior to model development. Model performance was assessed through calibration, shrinkage, and decision-curve analyses. Finally, the combined clinical and radiological model was compared to models utilizing only clinical or radiological predictors. The final model included age, sex, education status, Montreal cognitive assessment, Global Cerebral Atrophy Index, Medial Temporal Atrophy Scale, mean hippocampal volume, and Posterior Parietal Atrophy Index, with the area under the curve of 0.978 (0.934-0.996). Internal validation methods did not show substantial reduction in diagnostic performance. Combined model showed higher diagnostic performance compared to clinical and radiological models alone. Decision curve analysis highlighted the usefulness of this model for differentiation across all probability levels. A combined clinical-radiological model has excellent diagnostic performance in differentiating mild AD from MCI. Notably, the model leveraged straightforward neuroimaging markers, which are relatively simple to measure and interpret, suggesting that they could be integrated into practical, formula-driven diagnostic workflows without requiring computationally intensive deep learning models.
Page 130 of 1981980 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.