Sort by:
Page 123 of 3453445 results

Comparing large language models and text embedding models for automated classification of textual, semantic, and critical changes in radiology reports.

Lindholz M, Burdenski A, Ruppel R, Schulze-Weddige S, Baumgärtner GL, Schobert I, Haack AM, Eminovic S, Milnik A, Hamm CA, Frisch A, Penzkofer T

pubmed logopapersJul 14 2025
Radiology reports can change during workflows, especially when residents draft preliminary versions that attending physicians finalize. We explored how large language models (LLMs) and embedding techniques can categorize these changes into textual, semantic, or clinically actionable types. We evaluated 400 adult CT reports drafted by residents against finalized versions by attending physicians. Changes were rated on a five-point scale from no changes to critical ones. We examined open-source LLMs alongside traditional metrics like normalized word differences, Levenshtein and Jaccard similarity, and text embedding similarity. Model performance was assessed using quadratic weighted Cohen's kappa (κ), (balanced) accuracy, F<sub>1</sub>, precision, and recall. Inter-rater reliability among evaluators was excellent (κ = 0.990). Of the reports analyzed, 1.3 % contained critical changes. The tested methods showed significant performance differences (P < 0.001). The Qwen3-235B-A22B model using a zero-shot prompt, most closely aligned with human assessments of changes in clinical reports, achieving a κ of 0.822 (SD 0.031). The best conventional metric, word difference, had a κ of 0.732 (SD 0.048), the difference between the two showed statistical significance in unadjusted post-hoc tests (P = 0.038) but lost significance after adjusting for multiple testing (P = 0.064). Embedding models underperformed compared to LLMs and classical methods, showing statistical significance in most cases. Large language models like Qwen3-235B-A22B demonstrated moderate to strong alignment with expert evaluations of the clinical significance of changes in radiology reports. LLMs outperformed embedding methods and traditional string and word approaches, achieving statistical significance in most instances. This demonstrates their potential as tools to support peer review.

Early breast cancer detection via infrared thermography using a CNN enhanced with particle swarm optimization.

Alzahrani RM, Sikkandar MY, Begum SS, Babetat AFS, Alhashim M, Alduraywish A, Prakash NB, Ng EYK

pubmed logopapersJul 13 2025
Breast cancer remains the most prevalent cause of cancer-related mortality among women worldwide, with an estimated incidence exceeding 500,000 new cases annually. Timely diagnosis is vital for enhancing therapeutic outcomes and increasing survival probabilities. Although conventional diagnostic tools such as mammography are widely used and generally effective, they are often invasive, costly, and exhibit reduced efficacy in patients with dense breast tissue. Infrared thermography, by contrast, offers a non-invasive and economical alternative; however, its clinical adoption has been limited, largely due to difficulties in accurate thermal image interpretation and the suboptimal tuning of machine learning algorithms. To overcome these limitations, this study proposes an automated classification framework that employs convolutional neural networks (CNNs) for distinguishing between malignant and benign thermographic breast images. An Enhanced Particle Swarm Optimization (EPSO) algorithm is integrated to automatically fine-tune CNN hyperparameters, thereby minimizing manual effort and enhancing computational efficiency. The methodology also incorporates advanced image preprocessing techniques-including Mamdani fuzzy logic-based edge detection, Contrast-Limited Adaptive Histogram Equalization (CLAHE) for contrast enhancement, and median filtering for noise suppression-to bolster classification performance. The proposed model achieves a superior classification accuracy of 98.8%, significantly outperforming conventional CNN implementations in terms of both computational speed and predictive accuracy. These findings suggest that the developed system holds substantial potential for early, reliable, and cost-effective breast cancer screening in real-world clinical environments.

Impact of three-dimensional prostate models during robot-assisted radical prostatectomy on surgical margins and functional outcomes.

Khan N, Prezzi D, Raison N, Shepherd A, Antonelli M, Byrne N, Heath M, Bunton C, Seneci C, Hyde E, Diaz-Pinto A, Macaskill F, Challacombe B, Noel J, Brown C, Jaffer A, Cathcart P, Ciabattini M, Stabile A, Briganti A, Gandaglia G, Montorsi F, Ourselin S, Dasgupta P, Granados A

pubmed logopapersJul 13 2025
Robot-assisted radical prostatectomy (RARP) is the standard surgical procedure for the treatment of prostate cancer. RARP requires a trade-off between performing a wider resection in order to reduce the risk of positive surgical margins (PSMs) and performing minimal resection of the nerve bundles that determine functional outcomes, such as incontinence and potency, which affect patients' quality of life. In order to achieve favourable outcomes, a precise understanding of the three-dimensional (3D) anatomy of the prostate, nerve bundles and tumour lesion is needed. This is the protocol for a single-centre feasibility study including a prospective two-arm interventional group (a 3D virtual and a 3D printed prostate model), and a prospective control group. The primary endpoint will be PSM status and the secondary endpoint will be functional outcomes, including incontinence and sexual function. The study will consist of a total of 270 patients: 54 patients will be included in each of the interventional groups (3D virtual, 3D printed models), 54 in the retrospective control group and 108 in the prospective control group. Automated segmentation of prostate gland and lesions will be conducted on multiparametric magnetic resonance imaging (mpMRI) using 'AutoProstate' and 'AutoLesion' deep learning approaches, while manual annotation of the neurovascular bundles, urethra and external sphincter will be conducted on mpMRI by a radiologist. This will result in masks that will be post-processed to generate 3D printed/virtual models. Patients will be allocated to either interventional arm and the surgeon will be given either a 3D printed or a 3D virtual model at the start of the RARP procedure. At the 6-week follow-up, the surgeon will meet with the patient to present PSM status and capture functional outcomes from the patient via questionnaires. We will capture these measures as endpoints for analysis. These questionnaires will be re-administered at 3, 6 and 12 months postoperatively.

An improved U-NET3+ with transformer and adaptive attention map for lung segmentation.

Joseph Raj V, Christopher P

pubmed logopapersJul 13 2025
Accurate segmentation of lung regions from CT scan images is critical for diagnosing and monitoring respiratory diseases. This study introduces a novel hybrid architecture Adaptive Attention U-NetAA, which combines the strengths of U-Net3 + and Transformer based attention mechanisms models for high-precision lung segmentation. The U-Net3 + module effectively segments the lung region by leveraging its deep convolutional network with nested skip connections, ensuring rich multi-scale feature extraction. A key innovation is introducing an adaptive attention mechanism within the Transformer module, which dynamically adjusts the focus on critical regions in the image based on local and global contextual relationships. This model's adaptive attention mechanism addresses variations in lung morphology, image artifacts, and low-contrast regions, leading to improved segmentation accuracy. The combined convolutional and attention-based architecture enhances robustness and precision. Experimental results on benchmark CT datasets demonstrate that the proposed model achieves an IoU of 0.984, a Dice coefficient of 0.989, a MIoU of 0.972, and an HD95 of 1.22 mm, surpassing state-of-the-art methods. These results establish U-NetAA as a superior tool for clinical lung segmentation, with enhanced accuracy, sensitivity, and generalization capability.

Central Obesity-related Brain Alterations Predict Cognitive Impairments in First Episode of Psychosis.

Kolenič M, McWhinney SR, Selitser M, Šafářová N, Franke K, Vochoskova K, Burdick K, Španiel F, Hajek T

pubmed logopapersJul 13 2025
Cognitive impairment is a key contributor to disability and poor outcomes in schizophrenia, yet it is not adequately addressed by currently available treatments. Thus, it is important to search for preventable or treatable risk factors for cognitive impairment. Here, we hypothesized that obesity-related neurostructural alterations will be associated with worse cognitive outcomes in people with first episode of psychosis (FEP). This observational study presents cross-sectional data from the Early-Stage Schizophrenia Outcome project. We acquired T1-weighted 3D MRI scans in 440 participants with FEP at the time of the first hospitalization and in 257 controls. Metabolic assessments included body mass index (BMI), waist-to-hip ratio (WHR), serum concentrations of triglycerides, cholesterol, glucose, insulin, and hs-CRP. We chose machine learning-derived brain age gap estimate (BrainAGE) as our measure of neurostructural changes and assessed attention, working memory and verbal learning using Digit Span and the Auditory Verbal Learning Test. Among obesity/metabolic markers, only WHR significantly predicted both, higher BrainAGE (t(281)=2.53, p=0.012) and worse verbal learning (t(290) = -2.51, P = .026). The association between FEP and verbal learning was partially mediated by BrainAGE (average causal mediated effects, ACME = -0.04 [-0.10, -0.01], P = .022) and the higher BrainAGE in FEP was partially mediated by higher WHR (ACME = 0.08 [0.02, 0.15], P = .006). Central obesity-related brain alterations were linked with worse cognitive performance already early in the course of psychosis. These structure-function links suggest that preventing or treating central obesity could target brain and cognitive impairments in FEP.

Establishing an AI-based diagnostic framework for pulmonary nodules in computed tomography.

Jia R, Liu B, Ali M

pubmed logopapersJul 12 2025
Pulmonary nodules seen by computed tomography (CT) can be benign or malignant, and early detection is important for optimal management. The existing manual methods of identifying nodules have limitations, such as being time-consuming and erroneous. This study aims to develop an Artificial Intelligence (AI) diagnostic scheme that improves the performance of identifying and categorizing pulmonary nodules using CT scans. The proposed deep learning framework used convolutional neural networks, and the image database totaled 1,056 3D-DICOM CT images. The framework was initially preprocessing, including lung segmentation, nodule detection, and classification. Nodule detection was done using the Retina-UNet model, while the features were classified using a Support Vector Machine (SVM). Performance measures, including accreditation, sensitivity, specificity, and the AUROC, were used to evaluate the model's performance during training and validation. Overall, the developed AI model received an AUROC of 0.9058. The diagnostic accuracy was 90.58%, with an overall positive predictive value of 89% and an overall negative predictive value of 86%. The algorithm effectively handled the CT images at the preprocessing stage, and the deep learning model performed well in detecting and classifying nodules. The application of the new diagnostic framework based on AI algorithms increased the accuracy of the diagnosis compared with the traditional approach. It also provides high reliability for detecting pulmonary nodules and classifying the lesions, thus minimizing intra-observer differences and improving the clinical outcome. In perspective, the advancements may include increasing the size of the annotated data-set and fine-tuning the model due to detection issues of non-solitary nodules.

Characterizing aging-related genetic and physiological determinants of spinal curvature.

Wang FM, Ruby JG, Sethi A, Veras MA, Telis N, Melamud E

pubmed logopapersJul 12 2025
Increased spinal curvature is one of the most recognizable aging traits in the human population. However, despite high prevalence, the etiology of this condition remains poorly understood. To gain better insight into the physiological, biochemical, and genetic risk factors involved, we developed a novel machine learning method to automatically derive thoracic kyphosis and lumbar lordosis angles from dual-energy X-ray absorptiometry (DXA) scans in the UK Biobank Imaging cohort. We carry out genome-wide association and epidemiological association studies to identify genetic and physiological risk factors for both traits. In 41,212 participants, we find that on average males and females gain 2.42° in kyphotic and 1.48° in lordotic angle per decade of life. Increased spinal curvature shows a strong association with decreased muscle mass and bone mineral density. Adiposity demonstrates opposing associations, with decreased kyphosis and increased lordosis. Using Mendelian randomization, we show that genes fundamental to the maintenance of musculoskeletal function (COL11A1, PTHLH, ETFA, TWIST1) and cellular homeostasis such as RNA transcription and DNA repair (RAD9A, MMS22L, HIF1A, RAB28) are likely involved in increased spinal curvature. Our findings reveal a complex interplay between genetics, musculoskeletal health, and age-related changes in spinal curvature, suggesting potential drivers of this universal aging trait.

Vision-language model for report generation and outcome prediction in CT pulmonary angiogram.

Zhong Z, Wang Y, Wu J, Hsu WC, Somasundaram V, Bi L, Kulkarni S, Ma Z, Collins S, Baird G, Ahn SH, Feng X, Kamel I, Lin CT, Greineder C, Atalay M, Jiao Z, Bai H

pubmed logopapersJul 12 2025
Accurate and comprehensive interpretation of pulmonary embolism (PE) from Computed Tomography Pulmonary Angiography (CTPA) scans remains a clinical challenge due to the limited specificity and structure of existing AI tools. We propose an agent-based framework that integrates Vision-Language Models (VLMs) for detecting 32 PE-related abnormalities and Large Language Models (LLMs) for structured report generation. Trained on over 69,000 CTPA studies from 24,890 patients across Brown University Health (BUH), Johns Hopkins University (JHU), and the INSPECT dataset from Stanford, the model demonstrates strong performance in abnormality classification and report generation. For abnormality classification, it achieved AUROC scores of 0.788 (BUH), 0.754 (INSPECT), and 0.710 (JHU), with corresponding BERT-F1 scores of 0.891, 0.829, and 0.842. The abnormality-guided reporting strategy consistently outperformed the organ-based and holistic captioning baselines. For survival prediction, a multimodal fusion model that incorporates imaging, clinical variables, diagnostic outputs, and generated reports achieved concordance indices of 0.863 (BUH) and 0.731 (JHU), outperforming traditional PESI scores. This framework provides a clinically meaningful and interpretable solution for end-to-end PE diagnosis, structured reporting, and outcome prediction.

Integrating Artificial Intelligence in Thyroid Nodule Management: Clinical Outcomes and Cost-Effectiveness Analysis.

Bodoque-Cubas J, Fernández-Sáez J, Martínez-Hervás S, Pérez-Lacasta MJ, Carles-Lavila M, Pallarés-Gasulla RM, Salazar-González JJ, Gil-Boix JV, Miret-Llauradó M, Aulinas-Masó A, Argüelles-Jiménez I, Tofé-Povedano S

pubmed logopapersJul 12 2025
The increasing incidence of thyroid nodules (TN) raises concerns about overdiagnosis and overtreatment. This study evaluates the clinical and economic impact of KOIOS, an FDA-approved artificial intelligence (AI) tool for the management of TN. A retrospective analysis was conducted on 176 patients who underwent thyroid surgery between May 2022 and November 2024. Ultrasound images were evaluated independently by an expert and novice operators using the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS), while KOIOS provided AI-adapted risk stratification. Sensitivity, specificity, and Receiver-Operating Curve (ROC) analysis were performed. The incremental cost-effectiveness ratio (ICER) was defined based on the number of optimal care interventions (FNAB and thyroid surgery). Both deterministic and probabilistic sensitivity analyses were conducted to evaluate model robustness. KOIOS AI demonstrated similar diagnostic performance to the expert operator (AUC: 0.794, 95% CI: 0.718-0.871 vs. 0.784, 95% CI: 0.706-0.861; p = 0.754) and significantly outperformed the novice operator (AUC: 0.619, 95% CI: 0.526-0.711; p < 0.001). ICER analysis estimated the cost per additional optimal care decision at -€8,085.56, indicating KOIOS as a dominant and cost-saving strategy when considering a third-party payer perspective over a one-year horizon. Deterministic sensitivity analysis identified surgical costs as the main drivers of variability, while probabilistic analysis consistently favored KOIOS as the optimal strategy. KOIOS AI is a cost-effective alternative, particularly in reducing overdiagnosis and overtreatment for benign TNs. Prospective, real-life studies are needed to validate these findings and explore long-term implications.

Accelerated brain magnetic resonance imaging with deep learning reconstruction: a comparative study on image quality in pediatric neuroimaging.

Choi JW, Cho YJ, Lee SB, Lee S, Hwang JY, Choi YH, Cheon JE, Lee J

pubmed logopapersJul 12 2025
Magnetic resonance imaging (MRI) is crucial in pediatric radiology; however, the prolonged scan time is a major drawback that often requires sedation. Deep learning reconstruction (DLR) is a promising method for accelerating MRI acquisition. To evaluate the clinical feasibility of accelerated brain MRI with DLR in pediatric neuroimaging, focusing on image quality compared to conventional MRI. In this retrospective study, 116 pediatric participants (mean age 7.9 ± 5.4 years) underwent routine brain MRI with three reconstruction methods: conventional MRI without DLR (C-MRI), conventional MRI with DLR (DLC-MRI), and accelerated MRI with DLR (DLA-MRI). Two pediatric radiologists independently assessed the overall image quality, sharpness, artifacts, noise, and lesion conspicuity. Quantitative image analysis included the measurement of image noise and coefficient of variation (CoV). DLA-MRI reduced the scan time by 43% compared with C-MRI. Compared with C-MRI, DLA-MRI demonstrated higher scores for overall image quality, noise, and artifacts, as well as similar or higher scores for lesion conspicuity, but similar or lower scores for sharpness. DLC-MRI demonstrated the highest scores for all the parameters. Despite variations in image quality and lesion conspicuity, the lesion detection rates were 100% across all three reconstructions. Quantitative analysis revealed lower noise and CoV for DLA-MRI than those for C-MRI. Interobserver agreement was substantial to almost perfect (weighted Cohen's kappa = 0.72-0.97). DLR enabled faster MRI with improved image quality compared with conventional MRI, highlighting its potential to address prolonged MRI scan times in pediatric neuroimaging and optimize clinical workflows.
Page 123 of 3453445 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.