Back to all papers

[Research progress on quantitative magnetic susceptibility imaging reconstruction method based on improved U-network model].

December 25, 2025pubmed logopapers

Authors

Yang W,Zhang R,Keung S

Affiliations (2)

  • School of Computer Science, Xi'an Shiyou University, Xi'an 710065, P. R. China.
  • Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC 3800, Australian.

Abstract

Quantitative magnetic susceptibility imaging (QSM) is an imaging method based on magnetic resonance imaging (MRI) phase signal processing and inversion to obtain tissue magnetic susceptibility distribution, which can generate images reflecting the magnetic characteristics of tissues. QSM reconstruction process is complex, in which dipole inversion stage is the most challenging and decisive link, and traditional methods are easily affected by pathological conditions at this stage, resulting in artifacts and deviations. With the development of deep learning and machine vision technology, using U-network (U-Net) model to improve dipole inversion process can effectively avoid the shortcomings of traditional algorithms. In this paper, the application of the improved model based on U-Net architecture in dipole inversion from 2020 to now is summarized. Firstly, the theoretical concept of QSM is introduced. Secondly, the existing improved models based on U-Net architecture are divided into three categories: improved U-Net based on structural optimization, improved U-Net based on physical constraints and improved U-Net based on improving generalization ability, and their main characteristics and design starting points are sorted out. Finally, the development trend of the future model is prospected and summarized. To sum up, it is expected that the difficulties and challenges of dipole inversion will be solved, the accuracy of QSM images will be improved, and support for disease-aided diagnosis will be provided by summarizing and comparing different improved U-Net models in this paper.

Topics

Magnetic Resonance ImagingImage Processing, Computer-AssistedNeural Networks, ComputerJournal ArticleReviewEnglish Abstract

Ready to Sharpen Your Edge?

Subscribe to join 7,600+ peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.