Deep learning-based clinical decision support system for intracerebral hemorrhage: an imaging-based AI-driven framework for automated hematoma segmentation and trajectory planning.

Authors

Gan Z,Xu X,Li F,Kikinis R,Zhang J,Chen X

Affiliations (3)

  • 1Department of Neurosurgery, Chinese PLA General Hospital First Medical Center, Beijing.
  • 2Postgraduate School, Medical School of Chinese PLA, Beijing, China; and.
  • 3Surgical Planning Laboratory, Harvard Medical School, Boston, Massachusetts.

Abstract

Intracerebral hemorrhage (ICH) remains a critical neurosurgical emergency with high mortality and long-term disability. Despite advancements in minimally invasive techniques, procedural precision remains limited by hematoma complexity and resource disparities, particularly in underserved regions where 68% of global ICH cases occur. Therefore, the authors aimed to introduce a deep learning-based decision support and planning system to democratize surgical planning and reduce operator dependence. A retrospective cohort of 347 patients (31,024 CT slices) from a single hospital (March 2016-June 2024) was analyzed. The framework integrated nnU-Net-based hematoma and skull segmentation, CT reorientation via ocular landmarks (mean angular correction 20.4° [SD 8.7°]), safety zone delineation with dual anatomical corridors, and trajectory optimization prioritizing maximum hematoma traversal and critical structure avoidance. A validated scoring system was implemented for risk stratification. With the artificial intelligence (AI)-driven system, the automated segmentation accuracy reached clinical-grade performance (Dice similarity coefficient 0.90 [SD 0.14] for hematoma and 0.99 [SD 0.035] for skull), with strong interrater reliability (intraclass correlation coefficient 0.91). For trajectory planning of supratentorial hematomas, the system achieved a low-risk trajectory in 80.8% (252/312) and a moderate-risk trajectory in 15.4% (48/312) of patients, while replanning was required due to high-risk designations in 3.8% of patients (12/312). This AI-driven system demonstrated robust efficacy for supratentorial ICH, addressing 60% of prevalent hemorrhage subtypes. While limitations remain in infratentorial hematomas, this novel automated hematoma segmentation and surgical planning system could be helpful in assisting less-experienced neurosurgeons with limited resources in primary healthcare settings.

Topics

Deep LearningCerebral HemorrhageHematomaDecision Support Systems, ClinicalJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.