A Deep Neural Network Framework for the Detection of Bacterial Diseases from Chest X-Ray Scans.

Authors

Jain S,Jindal H,Bharti M

Affiliations (2)

  • Department of ECE, Jaypee University of Information Technology, Solan, Himachal Pradesh, India.
  • Department of CSE & IT, Amity University, Mohali, India.

Abstract

This research aims to develop an advanced deep-learning framework for detecting respiratory diseases, including COVID-19, pneumonia, and tuberculosis (TB), using chest X-ray scans. A Deep Neural Network (DNN)-based system was developed to analyze medical images and extract key features from chest X-rays. The system leverages various DNN learning algorithms to study X-ray scan color, curve, and edge-based features. The Adam optimizer is employed to minimize error rates and enhance model training. A dataset of 1800 chest X-ray images, consisting of COVID-19, pneumonia, TB, and typical cases, was evaluated across multiple DNN models. The highest accuracy was achieved using the VGG19 model. The proposed system demonstrated an accuracy of 94.72%, with a sensitivity of 92.73%, a specificity of 96.68%, and an F1-score of 94.66%. The error rate was 5.28% when trained with 80% of the dataset and tested on 20%. The VGG19 model showed significant accuracy improvements of 32.69%, 36.65%, 42.16%, and 8.1% over AlexNet, GoogleNet, InceptionV3, and VGG16, respectively. The prediction time was also remarkably low, ranging between 3 and 5 seconds. The proposed deep learning model efficiently detects respiratory diseases, including COVID-19, pneumonia, and TB, within seconds. The method ensures high reliability and efficiency by optimizing feature extraction and maintaining system complexity, making it a valuable tool for clinicians in rapid disease diagnosis.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.