Deep learning image reconstruction and adaptive statistical iterative reconstruction on coronary artery calcium scoring in high risk population for coronary heart disease.
Authors
Affiliations (4)
Affiliations (4)
- People's Hospital of Ningxia Hui Autonomous Region to People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, 301 Zhengyuan North Street, Jinfeng District, Yinchuan, Ningxia, China.
- GE (China) CT Imaging Research Center, Shanghai, China.
- Adachi Medical Center, Tokyo Women's Medical University, Tokyo, Japan.
- People's Hospital of Ningxia Hui Autonomous Region to People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, 301 Zhengyuan North Street, Jinfeng District, Yinchuan, Ningxia, China. [email protected].
Abstract
Deep learning image reconstruction (DLIR) technology effectively improves the image quality while maintaining spatial resolution. The impact of DLIR on the quantification of coronary artery calcium (CAC) is still unclear. The purpose of this study was to investigate the effect of DLIR on the quantification of coronary calcium in high-risk populations. A retrospective study was conducted on patients who underwent coronary artery CT angiography (CCTA) at our hospital(China) from February 2022 to September 2022. Raw data were reconstructed with filtered back projection (FBP) reconstruction, 40% and 80% level adaptive statistical iterative reconstruction-veo (ASiR-V 40%, ASiR-V 80%) and low, medium and high-level deep learning algorithm (DLIR-L, DLIR-M, and DLIR-H). Calculate and compare the signal-to-noise and contrast-to-noise ratio, volumetric score, mass scores, and Agaston score of 6 sets of images. There were 178 patients, female (107), mean age (62.43 ± 9.26), and mean BMI (25.33 ± 3.18) kg/m<sup>2</sup>. Compared with FBP, the image noise of ASiR-V and DLIR was significantly reduced (P < 0.001). There was no significant difference in Agaston score, volumetric score, and mass scores among the six reconstruction algorithms (all P > 0.05). Bland-Altman diagram indicated that the Agatston scores of the five reconstruction algorithms showed good agreement with FBP, with DLIR-L(AUC, 110.08; 95% CI: 26.48, 432.92;)and ASIR-V40% (AUC,110.96; 95% CI: 26.23, 431.34;) having the highest consistency with FBP. Compared with FBP, DLIR and ASiR-V improve CT image quality to varying degrees while having no impact on Agatston score-based risk stratification. CACS is a powerful tool for cardiovascular risk stratification, and DLIR can improve image quality without affecting CACS, making it widely applicable in clinical practice.