AI-Assisted Semiquantitative Measurement of Murine Bleomycin-Induced Lung Fibrosis Using In Vivo Micro-CT: An End-to-End Approach.

Authors

Cheng H,Gao T,Sun Y,Huang F,Gu X,Shan C,Wang B,Luo S

Affiliations (4)

  • School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
  • Clinical Stem Cell Center, The Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China.
  • Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road (M), Shanghai, 200040, China.
  • Department of Networking and Edge Division, Intel Asia Pacific Research and Development, Shanghai, Shanghai, China.

Abstract

Small animal models are crucial for investigating idiopathic pulmonary fibrosis (IPF) and developing preclinical therapeutic strategies. However, there are several limitations to the quantitative measurements used in the longitudinal assessment of experimental lung fibrosis, e.g., histological or biochemical analyses introduce inter-individual variability, while image-derived biomarker has yet to directly and accurately quantify the severity of lung fibrosis. This study investigates artificial intelligence (AI)-assisted, end-to-end, semi-quantitative measurement of lung fibrosis using in vivo micro-CT. Based on the bleomycin (BLM)-induced lung fibrosis mouse model, the AI model predicts histopathological scores from in vivo micro-CT images, directly correlating these images with the severity of lung fibrosis in mice. Fibrosis severity was graded by the Ashcroft scale: none (0), mild (1-3), moderate (4-5), severe (≥6).The overall accuracy, precision, recall, and F1 scores of the lung fibrosis severity-stratified 3-fold cross validation on 225 micro-CT images for the proposed AI model were 92.9%, 90.9%, 91.6%, and 91.0%. The overall area under the receiver operating characteristic curve (AUROC) was 0.990 (95% CI: 0.977, 1.000), with AUROC values of 1.000 for none (100 images, 95% CI: 0.997, 1.000), 0.969 for mild (43 images, 95% CI: 0.918, 1.000), 0.992 for moderate (36 images, 95% CI: 0.962, 1.000), and 0.992 for severe (46 images, 95% CI: 0.967, 1.000). Preliminary results indicate that AI-assisted, in vivo micro-CT-based semi-quantitative measurements of murine are feasible and likely accurate. This novel method holds promise as a tool to improve the reproducibility of experimental studies in animal models of IPF.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.