A Deep Learning Framework for Synthesizing Longitudinal Infant Brain MRI during Early Development.
Authors
Affiliations (4)
Affiliations (4)
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 20030, PR China.
- School of Information and Technology, Northwest University, Xi'an, PR China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
- Shanghai Clinical Research and Trial Center, Shanghai, PR China.
Abstract
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content</i>. Purpose To develop a three-stage, age-and modality-conditioned framework to synthesize longitudinal infant brain MRI scans, and account for rapid structural and contrast changes during early brain development. Materials and Methods This retrospective study used T1- and T2-weighted MRI scans (848 scans) from 139 infants in the Baby Connectome Project, collected since September 2016. The framework models three critical image cues related: volumetric expansion, cortical folding, and myelination, predicting missing time points with age and modality as predictive factors. The method was compared with LGAN, CounterSyn, and Diffusion-based approach using peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the Dice similarity coefficient (DSC). Results The framework was trained on 119 participants (average age: 11.25 ± 6.16 months, 60 female, 59 male) and tested on 20 (average age: 12.98 ± 6.59 months, 11 female, 9 male). For T1-weighted images, PSNRs were 25.44 ± 1.95 and 26.93 ± 2.50 for forward and backward MRI synthesis, and SSIMs of 0.87 ± 0.03 and 0.90 ± 0.02. For T2-weighted images, PSNRs were 26.35 ± 2.30 and 26.40 ± 2.56, with SSIMs of 0.87 ± 0.03 and 0.89 ± 0.02, significantly outperforming competing methods (<i>P</i> < .001). The framework also excelled in tissue segmentation (<i>P</i> < .001) and cortical reconstruction, achieving DSC of 0.85 for gray matter and 0.86 for white matter, with intraclass correlation coefficients exceeding 0.8 in most cortical regions. Conclusion The proposed three-stage framework effectively synthesized age-specific infant brain MRI scans, outperforming competing methods in image quality and tissue segmentation with strong performance in cortical reconstruction, demonstrating potential for developmental modeling and longitudinal analyses. ©RSNA, 2025.