Characterizing the Impact of Training Data on Generalizability: Application in Deep Learning to Estimate Lung Nodule Malignancy Risk.
Authors
Affiliations (2)
Affiliations (2)
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 525 GA Nijmegen, the Netherlands.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
Abstract
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content</i>. Purpose To investigate the relationship between training data volume and performance of a deep learning AI algorithm developed to assess the malignancy risk of pulmonary nodules detected on low-dose CT scans in lung cancer screening. Materials and Methods This retrospective study used a dataset of 16077 annotated nodules (1249 malignant, 14828 benign) from the National Lung Screening Trial (NLST) to systematically train an AI algorithm for pulmonary nodule malignancy risk prediction across various stratified subsets ranging from 1.25% to the full dataset. External testing was conducted using data from the Danish Lung Cancer Screening Trial (DLCST) to determine the amount of training data at which the performance of the AI was statistically non-inferior to the AI trained on the full NLST cohort. A size-matched cancer-enriched subset of DLCST, where each malignant nodule had been paired in diameter with the closest two benign nodules, was used to investigate the amount of training data at which the performance of the AI algorithm was statistically non-inferior to the average performance of 11 clinicians. Results The external testing set included 599 participants (mean age 57.65 (SD 4.84) for females and mean age 59.03 (SD 4.94) for males) with 883 nodules (65 malignant, 818 benign). The AI achieved a mean AUC of 0.92 [95% CI: 0.88, 0.96] on the DLCST cohort when trained on the full NLST dataset. Training with 80% of NLST data resulted in non-inferior performance (mean AUC 0.92 [95%CI: 0.89, 0.96], <i>P</i> = .005). On the size-matched DLCST subset (59 malignant, 118 benign), the AI reached non-inferior clinician-level performance (mean AUC 0.82 [95% CI: 0.77, 0.86]) with 20% of the training data (<i>P</i> = .02). Conclusion The deep learning AI algorithm demonstrated excellent performance in assessing pulmonary nodule malignancy risk, achieving clinical level performance with a fraction of the training data and reaching peak performance before utilizing the full dataset. ©RSNA, 2025.