High-performance Open-source AI for Breast Cancer Detection and Localization in MRI.

Authors

Hirsch L,Sutton EJ,Huang Y,Kayis B,Hughes M,Martinez D,Makse HA,Parra LC

Affiliations (3)

  • Department of Biomedical Engineering, City College of the City University of New York, 160 Convent Ave, New York, NY 10031.
  • Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Levich institute and Department of Physics, City College of the City University of New York, New York, NY.

Abstract

<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop and evaluate an open-source deep learning model for detection and localization of breast cancer on MRI. Materials and Methods In this retrospective study, a deep learning model for breast cancer detection and localization was trained on the largest breast MRI dataset to date. Data included all breast MRIs conducted at a tertiary cancer center in the United States between 2002 and 2019. The model was validated on sagittal MRIs from the primary site (<i>n</i> = 6,615 breasts). Generalizability was assessed by evaluating model performance on axial data from the primary site (<i>n</i> = 7,058 breasts) and a second clinical site (<i>n</i> = 1,840 breasts). Results The primary site dataset included 30,672 sagittal MRI examinations (52,598 breasts) from 9,986 female patients (mean [SD] age, 53 [11] years). The model achieved an area under the receiver operating characteristic curve (AUC) of 0.95 for detecting cancer in the primary site. At 90% specificity (5717/6353), model sensitivity was 83% (217/262), which was comparable to historical performance data for radiologists. The model generalized well to axial examinations, achieving an AUC of 0.92 on data from the same clinical site and 0.92 on data from a secondary site. The model accurately located the tumor in 88.5% (232/262) of sagittal images, 92.8% (272/293) of axial images from the primary site, and 87.7% (807/920) of secondary site axial images. Conclusion The model demonstrated state-of-the-art performance on breast cancer detection. Code and weights are openly available to stimulate further development and validation. ©RSNA, 2025.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.