MR-Transformer: A Vision Transformer-based Deep Learning Model for Total Knee Replacement Prediction Using MRI.

Authors

Zhang C,Chen S,Cigdem O,Rajamohan HR,Cho K,Kijowski R,Deniz CM

Affiliations (2)

  • Department of Radiology, New York University Grossman School of Medicine, 227 E 30th St, 7th Fl, New York, NY 10016.
  • Center for Data Science, New York University, New York, NY.

Abstract

<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a transformer-based deep learning model-MR-Transformer-that leverages ImageNet pretraining and three-dimensional (3D) spatial correlations to predict the progression of knee osteoarthritis to TKR using MRI. Materials and Methods This retrospective study included 353 case-control matched pairs of coronal intermediate-weighted turbo spin-echo (COR-IW-TSE) and sagittal intermediate-weighted turbo spin-echo with fat suppression (SAG-IW-TSE-FS) knee MRIs from the Osteoarthritis Initiative (OAI) database, with a follow-up period up to 9 years, and 270 case-control matched pairs of coronal short-tau inversion recovery (COR-STIR) and sagittal proton density fat-saturated (SAG-PD-FAT-SAT) knee MRIs from the Multicenter Osteoarthritis Study (MOST) database, with a follow-up period up to 7 years. Performance of the MR-Transformer to predict the progression of knee osteoarthritis was compared with that of existing state-of-the-art deep learning models (TSE-Net, 3DMeT, and MRNet) using sevenfold nested cross-validation across the four MRI tissue sequences. Results MR-Transformer achieved areas under the receiver operating characteristic curves (AUCs) of 0.88 (95% CI: 0.85, 0.91), 0.88 (95% CI: 0.85, 0.90), 0.86 (95% CI: 0.82, 0.89), and 0.84 (95% CI: 0.81, 0.87) for COR-IW-TSE, SAG-IW-TSE-FS, COR-STIR, and SAG-PD-FAT-SAT, respectively. The model achieved a higher AUC than that of 3DMeT for all MRI sequences (<i>P</i> < .001). The model showed the highest sensitivity of 83% (95% CI: 78, 87%) and specificity of 83% (95% CI: 76, 88%) for the COR-IW-TSE MRI sequence. Conclusion Compared with the existing deep learning models, the MR-Transformer exhibited state-of-the-art performance in predicting the progression of knee osteoarthritis to TKR using MRIs. ©RSNA, 2025.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.