Association of initial core volume on non-contrast CT using a deep learning algorithm with clinical outcomes in acute ischemic stroke: a potential tool for selection and prognosis?
Authors
Affiliations (6)
Affiliations (6)
- Stroke Unit. Neurology Department, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.
- Institut d'Investigacio Sanitaria Pere Virgili, Tarragona, Spain.
- Neurology Department, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
- Methinks Software SL, Barcelona, Spain.
- Stroke Unit, Vall d'Hebron University Hospital, Barcelona, Spain.
- Neurology Department, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA [email protected].
Abstract
In an extended time window, contrast-based neuroimaging is valuable for treatment selection or prognosis in patients with stroke undergoing reperfusion treatment. However, its immediate availability remains limited, especially in resource-constrained regions. We sought to evaluate the association of initial core volume (ICV) measured on non-contrast computed tomography (NCCT) by a deep learning-based algorithm with outcomes in patients undergoing reperfusion treatment. Consecutive patients who received reperfusion treatments were collected from a prospectively maintained registry in three comprehensive stroke centers from January 2021 to May 2024. ICV on admission was estimated on NCCT by a previously validated deep learning algorithm (Methinks). Outcomes of interest included favorable outcome (modified Rankin Scale score 0-2 at 90 days) and symptomatic intracranial hemorrhage (sICH). The study comprised 658 patients of mean (SD) age 72.7 (14.4) years and median (IQR) baseline National Institutes of Health Stroke Scale (NIHSS) score of 12 (6-19). Primary endovascular treatment was performed in 53.7% of patients and 24.9% received IV thrombolysis only. Patients with favorable outcomes had a lower mean (SD) automated ICV (aICV; 12.9 (26.9) mL vs 34.9 (40) mL, P<0.001). Lower aICV was associated with a favorable outcome (adjusted OR 0.983 (95% CI 0.975 to 0.992), P<0.001) after adjusted logistic regression. For every 1 mL increase in aICV, the odds of a favorable outcome decreased by 1.7%. Patients who experienced sICH had a higher mean (SD) aICV (47.8 (61.1) mL vs 20.5 (32) mL, P=0.001). Higher aICV was independently associated with sICH (adjusted OR 1.014 (95% CI 1.004 to 1.025), P=0.009) after adjusted logistic regression. For every 1 mL increase in aICV, the odds of sICH increased by 1.4%. In patients with stroke undergoing reperfusion therapy, aICV assessment on NCCT predicts long-term outcomes and sICH. Further studies determining the potential role of aICV assessment to safely expand and simplify reperfusion therapies based on AI interpretation of NCCT may be justified.