A Lightweight CNN Approach for Hand Gesture Recognition via GAF Encoding of A-mode Ultrasound Signals.
Authors
Abstract
Hand gesture recognition(HGR) is a key technology in human-computer interaction and human communication. This paper presents a lightweight, parameter-free attention convolutional neural network (LPA-CNN) approach leveraging Gramian Angular Field(GAF)transformation of A-mode ultrasound signals for HGR. First, this paper maps 1-dimensional (1D) A-mode ultrasound signals, collected from the forearm muscles of 10 healthy participants, into 2-dimensional (2D) images. Second, GAF is selected owing to its higher sensitivity against Markov Transition Field (MTF) and Recurrence Plot (RP) in HGR. Third, a novel LPA-CNN consisting of four components, i.e., a convolution-pooling block, an attention mechanism, an inverted residual block, and a classification block, is proposed. Among them, the convolution-pooling block consists of convolutional and pooling layers, the attention mechanism is applied to generate 3-D weights, the inverted residual block consists of multiple channel shuffling units, and the classification block is performed through fully connected layers. Fourth, comparative experiments were conducted on GoogLeNet, MobileNet, and LPA-CNN to validate the effectiveness of the proposed method. Experimental results show that compared to GoogLeNet and MobileNet, LPA-CNN has a smaller model size and better recognition performance, achieving a classification accuracy of 0.98 ±0.02. This paper achieves efficient and high-accuracy HGR by encoding A-mode ultrasound signals into 2D images and integrating the LPA-CNN model, providing a new technological approach for HGR based on ultrasonic signals.