Back to all papers

A Lightweight CNN Approach for Hand Gesture Recognition via GAF Encoding of A-mode Ultrasound Signals.

Authors

Shangguan Q,Lian Y,Liao Z,Chen J,Song Y,Yao L,Jiang C,Lu Z,Lin Z

Abstract

Hand gesture recognition(HGR) is a key technology in human-computer interaction and human communication. This paper presents a lightweight, parameter-free attention convolutional neural network (LPA-CNN) approach leveraging Gramian Angular Field(GAF)transformation of A-mode ultrasound signals for HGR. First, this paper maps 1-dimensional (1D) A-mode ultrasound signals, collected from the forearm muscles of 10 healthy participants, into 2-dimensional (2D) images. Second, GAF is selected owing to its higher sensitivity against Markov Transition Field (MTF) and Recurrence Plot (RP) in HGR. Third, a novel LPA-CNN consisting of four components, i.e., a convolution-pooling block, an attention mechanism, an inverted residual block, and a classification block, is proposed. Among them, the convolution-pooling block consists of convolutional and pooling layers, the attention mechanism is applied to generate 3-D weights, the inverted residual block consists of multiple channel shuffling units, and the classification block is performed through fully connected layers. Fourth, comparative experiments were conducted on GoogLeNet, MobileNet, and LPA-CNN to validate the effectiveness of the proposed method. Experimental results show that compared to GoogLeNet and MobileNet, LPA-CNN has a smaller model size and better recognition performance, achieving a classification accuracy of 0.98 ±0.02. This paper achieves efficient and high-accuracy HGR by encoding A-mode ultrasound signals into 2D images and integrating the LPA-CNN model, providing a new technological approach for HGR based on ultrasonic signals.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.