Back to all papers

Lesion Asymmetry Screening Assisted Global Awareness Multi-view Network for Mammogram Classification.

Authors

Liu X,Sun L,Li C,Han B,Jiang W,Yuan T,Liu W,Liu Z,Yu Z,Liu B

Abstract

Mammography is a primary method for early screening, and developing deep learning-based computer-aided systems is of great significance. However, current deep learning models typically treat each image as an independent entity for diagnosis, rather than integrating images from multiple views to diagnose the patient. These methods do not fully consider and address the complex interactions between different views, resulting in poor diagnostic performance and interpretability. To address this issue, this paper proposes a novel end-to-end framework for breast cancer diagnosis: lesion asymmetry screening assisted global awareness multi-view network (LAS-GAM). More than just the most common image-level diagnostic model, LAS-GAM operates at the patient level, simulating the workflow of radiologists analyzing mammographic images. The framework processes the four views of a patient and revolves around two key modules: a global module and a lesion screening module. The global module simulates the comprehensive assessment by radiologists, integrating complementary information from the craniocaudal (CC) and mediolateral oblique (MLO) views of both breasts to generate global features that represent the patient's overall condition. The lesion screening module mimics the process of locating lesions by comparing symmetric regions in contralateral views, identifying potential lesion areas and extracting lesion-specific features using a lightweight model. By combining the global features and lesion-specific features, LAS-GAM simulates the diagnostic process, making patient-level predictions. Moreover, it is trained using only patient-level labels, significantly reducing data annotation costs. Experiments on the Digital Database for Screening Mammography (DDSM) and In-house datasets validate LAS-GAM, achieving AUCs of 0.817 and 0.894, respectively.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.