Back to all papers

Stroke-Aware CycleGAN: Improving Low-Field MRI Image Quality for Accurate Stroke Assessment.

Authors

Zhou Y,Liu Z,Xie X,Li H,Zhu W,Zhang Z,Suo Y,Meng X,Cheng J,Xu H,Wang N,Wang Y,Zhang C,Xue B,Jing J,Wang Y,Liu T

Abstract

Low-field portable magnetic resonance imaging (pMRI) devices address a crucial requirement in the realm of healthcare by offering the capability for on-demand and timely access to MRI, especially in the context of routine stroke emergency. Nevertheless, images acquired by these devices often exhibit poor clarity and low resolution, resulting in their reduced potential to support precise diagnostic evaluations and lesion quantification. In this paper, we propose a 3D deep learning based model, named Stroke-Aware CycleGAN (SA-CycleGAN), to enhance the quality of low-field images for further improving diagnosis of routine stroke. Firstly, based on traditional CycleGAN, SA-CycleGAN incorporates a prior of stroke lesions by applying a novel spatial feature transform mechanism. Secondly, gradient difference losses are combined to deal with the problem that the synthesized images tend to be overly smooth. We present a dataset comprising 101 paired high-field and low-field diffusion-weighted imaging (DWI), which were acquired through dual scans of the same patient in close temporal proximity. Our experiments demonstrate that SA-CycleGAN is capable of generating images with higher quality and greater clarity compared to the original low-field DWI. Additionally, in terms of quantifying stroke lesions, SA-CycleGAN outperforms existing methods. The lesion volume exhibits a strong correlation between the generated images and the high-field images, with R=0.852. In contrast, the lesion volume correlation between the low-field images and the high-field images is notably lower, with R=0.462. Furthermore, the mean absolute difference in lesion volumes between the generated images and high-field images (1.73±2.03 mL) was significantly smaller than the difference between the low-field images and high-field images (2.53±4.24 mL). It shows that the synthesized images not only exhibit superior visual clarity compared to the low-field acquired images, but also possess a high degree of consistency with high-field images. In routine clinical practice, the proposed SA-CycleGAN offers an accessible and cost-effective means of rapidly obtaining higher-quality images, holding the potential to enhance the efficiency and accuracy of stroke diagnosis in routine clinical settings. The code and trained models will be released on GitHub: SA-CycleGAN.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.