Semi-Supervised Gland Segmentation via Feature-Enhanced Contrastive Learning and Dual-Consistency Strategy.

Authors

Yu J,Li B,Pan X,Shi Z,Wang H,Lan R,Luo X

Abstract

In the field of gland segmentation in histopathology, deep-learning methods have made significant progress. However, most existing methods not only require a large amount of high-quality annotated data but also tend to confuse the internal of the gland with the background. To address this challenge, we propose a new semi-supervised method named DCCL-Seg for gland segmentation, which follows the teacher-student framework. Our approach can be divided into follows steps. First, we design a contrastive learning module to improve the ability of the student model's feature extractor to distinguish between gland and background features. Then, we introduce a Signed Distance Field (SDF) prediction task and employ dual-consistency strategy (across tasks and models) to better reinforce the learning of gland internal. Next, we proposed a pseudo label filtering and reweighting mechanism, which filters and reweights the pseudo labels generated by the teacher model based on confidence. However, even after reweighting, the pseudo labels may still be influenced by unreliable pixels. Finally, we further designed an assistant predictor to learn the reweighted pseudo labels, which do not interfere with the student model's predictor and ensure the reliability of the student model's predictions. Experimental results on the publicly available GlaS and CRAG datasets demonstrate that our method outperforms other semi-supervised medical image segmentation methods.

Topics

Deep LearningSupervised Machine LearningImage Interpretation, Computer-AssistedJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.