A Multi-Modal Deep Learning Framework for Predicting PSA Progression-Free Survival in Metastatic Prostate Cancer Using PSMA PET/CT Imaging
Authors
Affiliations (1)
Affiliations (1)
- Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
Abstract
PSMA PET/CT imaging has been increasingly utilized in the management of patients with metastatic prostate cancer (mPCa). Imaging biomarkers derived from PSMA PET may provide improved prognostication and prediction of treatment response for mPCa patients. This study investigates a novel deep learning-derived imaging biomarker framework for outcome prediction using multi-modal PSMA PET/CT and clinical features. A single institution cohort of 99 mPCa patients with 396 lesions was evaluated. Imaging features were extracted from cropped lesion areas and combined with clinical variables including body mass index, ECOG performance status, prostate specific antigen (PSA) level, Gleason score, and treatments received. The PSA progression-free survival (PFS) model was trained using a ResNet architecture with a Cox proportional hazards loss function using five-fold cross-validation. Performance was assessed using concordance index (C-index) and Kaplan-Meier survival analysis. Among evaluated model architectures, the ResNet-18 backbone offered the best performance. The multi-modal deep learning framework achieved a 5-fold cross-validation C-index ranging from 0.75 to 0.94, outperforming models incorporating imaging only (0.70-0.89) and clinical features only (0.53-0.65). Kaplan-Meir survival analysis performed on the deep learning-derived predictions demonstrated clear risk stratification, with a median PSA progression free survival (PFS) of 19.7 months in the high-risk group and 26 months in the low-risk group (P < 0.001). Deep learning-derived imaging biomarker based on PSMA PET/CT can effectively predict PSA PFS for mPCa patients. Further clinical validation in prospective cohorts is warranted.