DWI and Clinical Characteristics Correlations in Acute Ischemic Stroke After Thrombolysis

Authors

Li, J.,Huang, C.,Liu, Y.,Li, Y.,Zhang, J.,Xiao, M.,yan, Z.,zhao, H.,Zeng, X.,Mu, J.

Affiliations (1)

  • The First Affiliated Hospital of Chongqing Medical University

Abstract

ObjectiveMagnetic Resonance Diffusion-Weighted Imaging (DWI) is a crucial tool for diagnosing acute ischemic stroke, yet some patients present as DWI-negative. This study aims to analyze the imaging differences and associated clinical characteristics in acute ischemic stroke patients receiving intravenous thrombolysis, in order to enhance understanding of DWI-negative strokes. MethodsRetrospective collection of clinical data from acute ischemic stroke patients receiving intravenous thrombolysis at the Stroke Center of the First Affiliated Hospital of Chongqing Medical University from January 2017 to June 2023, categorized into DWI-positive and negative groups. Descriptive statistics, univariate analysis, binary logistic regression, and machine learning model were utilized to assess the predictive value of clinical features. Additionally, telephone follow-up was conducted for DWI-negative patients to record medication compliance, stroke recurrence, and mortality, with Fine-Gray competing risk model used to analyze recurrent risk factors. ResultsThe incidence rate of DWI-negative ischemic stroke is 22.74%. Factors positively associated with DWI-positive cases include onset to needle time (ONT), onset to first MRI time (OMT), NIHSS score at 1 week of hospitalization (NIHSS-1w), hyperlipidemia (HLP), and atrial fibrillation (AF) (p<0.05, OR>1). Conversely, recurrent ischemic stroke (RIS) and platelet count (PLT) are negatively correlated with DWI-positive cases (p<0.05, OR<1). Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification significantly influences DWI presentation (p=0.01), but the specific impact of etiological subtypes remains unclear. Machine learning models suggest that the features with the highest predictive value, in descending order, are AF, HLP, OMT, ONT, NIHSS difference within 24 hours post-thrombolysis(NIHSS-d(0-24h)PT), and RIS. ConclusionsNIHSS-1w, OMT, ONT, HLP, and AF can predict DWI-positive findings, while platelet count and RIS are associated with DWI-negative cases. AF and HLP demonstrate the highest predictive value. DWI-negative patients have a higher risk of stroke recurrence than mortality in the short term, with a potential correlation between TOAST classification and recurrence risk.

Topics

neurology

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.