Children's drug research and development incentives and market pricing optimization based on medical imaging.
Authors
Affiliations (2)
Affiliations (2)
- College of Continuing Education, China Pharmaceutical University, Nanjing, 210000, Jiangsu, China.
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China. [email protected].
Abstract
Due to differences in physiological characteristics and drug metabolism between children and adults, drug efficacy evaluation and safety monitoring in pediatric drug development present significant challenges. This paper proposes a data-driven incentive mechanism for pediatric drug development based on medical imaging data. This approach optimizes drug market pricing through precise imaging data, promoting accessibility and R&D efficiency for pediatric drugs. This study first collects multi-source computed tomography (CT), magnetic resonance imaging (MRI), and X-ray data, focusing on images of common pediatric diseases. After data preprocessing, a convolutional neural network (CNN) is used for feature extraction to extract key image information. Image difference methods and a U-Net image segmentation network are then used to evaluate drug efficacy and safety, quantify efficacy changes, and analyze side effects. Next, a drug efficacy-safety evaluation model is developed, and game theory is employed to design a R&D incentive mechanism. Monte Carlo simulation is combined with risk assessment to comprehensively consider factors such as cost, R&D investment, and market demand during the pricing optimization phase. A dynamic pricing strategy is implemented to ensure both economic benefits and social accessibility of the drug. Experiments have shown that the drug has a good development effect, with an average tumor volume reduction of 32.7% (95% CI: 28.4%-36.9%). The drug's impact on organ volume is within ± 2 cm³, and the market pricing strategy selects a relatively optimal price point.