Refined prognostication of pathological complete response in breast cancer using radiomic features and optimized InceptionV3 with DCE-MRI.

Authors

Pattanayak S,Singh T,Kumar R

Affiliations (3)

  • Department of Computer Sciences and Engineering, Amrita School of Computing, Amrita Vishwavidyapeetham, Bengaluru, Bengaluru, Karnataka, 560067, India.
  • Department of Computer Sciences and Engineering, Amrita School of Computing, Amrita Vishwavidyapeetham, Bengaluru, Bengaluru, Karnataka, 560067, India. [email protected].
  • Radiation Oncology, Amrita Hospital, Faridabad, India.

Abstract

Neoadjuvant therapy plays a pivotal role in breast cancer treatment, particularly for patients aiming to conserve their breast by reducing tumor size pre-surgery. The ultimate goal of this treatment is achieving a pathologic complete response (pCR), which signifies the complete eradication of cancer cells, thereby lowering the likelihood of recurrence. This study introduces a novel predictive approach to identify patients likely to achieve pCR using radiomic features extracted from MR images, enhanced by the InceptionV3 model and cutting-edge validation methodologies. In our study, we gathered data from 255 unique Patient IDs sourced from the -SPY 2 MRI database with the goal of classifying pCR (pathological complete response). Our research introduced two key areas of novelty.Firstly, we explored the extraction of advanced features from the dcom series such as Area, Perimeter, Entropy, Intensity of the places where the intensity is more than the average intensity of the image. These features provided deeper insights into the characteristics of the MRI data and enhanced the discriminative power of our classification model.Secondly, we applied these extracted features along with combine pixel array of the dcom series of each patient to the numerous deep learning model along with InceptionV3 (GoogleNet) model which provides the best accuracy. To optimize the model's performance, we experimented with different combinations of loss functions, optimizer functions, and activation functions. Lastly, our classification results were subjected to validation using accuracy, AUC, Sensitivity, Specificity and F1 Score. These evaluation metrics provided a robust assessment of the model's performance and ensured the reliability of our findings. The successful combination of advanced feature extraction, utilization of the InceptionV3 model with tailored hyperparameters, and thorough validation using cutting-edge techniques significantly enhanced the accuracy and reliability of our pCR classification study. By adopting a collaborative approach that involved both radiologists and the computer-aided system, we achieved superior predictive performance for pCR, as evidenced by the impressive values obtained for the area under the curve (AUC) at 0.91 having an accuracy of .92. Overall, the combination of advanced feature extraction, leveraging the InceptionV3 model with customized hyperparameters, and rigorous validation using state-of-the-art techniques contributed to the accuracy and credibility of our pCR classification study.

Topics

Breast NeoplasmsMagnetic Resonance ImagingJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.