Noise-induced self-supervised hybrid UNet transformer for ischemic stroke segmentation with limited data annotations.

Authors

Soh WK,Rajapakse JC

Affiliations (2)

  • College of Computing and Data Science, Nanyang Technological University, Singapore, 639798, Singapore.
  • College of Computing and Data Science, Nanyang Technological University, Singapore, 639798, Singapore. [email protected].

Abstract

We extend the Hybrid Unet Transformer (HUT) foundation model, which combines the advantages of the CNN and Transformer architectures with a noisy self-supervised approach, and demonstrate it in an ischemic stroke lesion segmentation task. We introduce a self-supervised approach using a noise anchor and show that it can perform better than a supervised approach under a limited amount of annotated data. We supplement our pre-training process with an additional unannotated CT perfusion dataset to validate our approach. Compared to the supervised version, the noisy self-supervised HUT (HUT-NSS) outperforms its counterpart by a margin of 2.4% in terms of dice score. HUT-NSS, on average, gained a further margin of 7.2% dice score and 28.1% Hausdorff Distance score over the state-of-the-art network USSLNet on the CT perfusion scans of the Ischemic Stroke Lesion Segmentation (ISLES2018) dataset. In limited annotated data sets, we show that HUT-NSS gained 7.87% of the dice score over USSLNet when we used 50% of the annotated data sets for training. HUT-NSS gained 7.47% of the dice score over USSLNet when we used 10% of the annotated datasets, and HUT-NSS gained 5.34% of the dice score over USSLNet when we used 1% of the annotated datasets for training. The code is available at https://github.com/vicsohntu/HUTNSS_CT .

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.