Classification of biomedical lung cancer images using optimized binary bat technique by constructing oblique decision trees.
Authors
Affiliations (3)
Affiliations (3)
- Department of Computer Science and Engineering, VM Singh Bhandari Uttarakhand Technical University, Dehradun, India. [email protected].
- Department of Systemics, School of Computer Science, University of Petroleum and Energy Studies, Dehradun, India.
- Department of Computer Science and Engineering, Dev Bhoomi Uttarakhand University, Dehradun, India.
Abstract
Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process. These critical issues compromise the extraction of biomedical traits and also design incomplete classification of lung cancer. As the conventional approaches are partially successful in dealing with the complex nature of high-dimensional and imbalanced biomedical data for lung cancer classification. Thus, there is a crucial need to develop a robust classification technique which can address these major concerns in the classification of lung cancer images. In this paper, we propose a novel structural formation of the oblique decision tree (OBT) using a swarm intelligence technique, namely, the Binary Bat Swarm Algorithm (BBSA). The application of BBSA enables a competitive recognition rate to make structural reforms while building OBT. Such integration improves the ability of the machine learning swarm classifier (MLSC) to handle high-dimensional features and imbalanced biomedical datasets. The adaptive feature selection using BBSA allows for the exploration and selection of relevant features required for classification from ODT. The ODT classifier introduces flexibility in decision boundaries, which enables it to capture complex linkages between biomedical data. The proposed MLSC model effectively handles high-dimensional, imbalanced lung cancer datasets using TCGA_LUSC_2016 and TCGA_LUAD_2016 modalities, achieving superior precision, recall, F-measure, and execution efficiency. The experiments are conducted in Python to evaluate the performance metrics that consistently demonstrate enhanced classification accuracy and reduced misclassification rates compared to existing methods. The MLSC is assessed in terms of both qualitative and quantitative measurements to study the capability of the proposed MLSC in classifying the instances more effectively than the conventional state-of-the-art methods.