Back to all papers

Multi-view deep learning framework for the detection of chest X-rays compatible with pediatric pulmonary tuberculosis.

October 27, 2025pubmed logopapers

Authors

Capellán-Martín D,Gómez-Valverde JJ,Sánchez-Jacob R,Hernanz-Lobo A,Schaaf HS,García-Delgado L,Augusto O,Roshanitabrizi P,García-Basteiro AL,Ribó JL,Lancharro Á,Noguera-Julian A,Blázquez-Gamero D,Linguraru MG,Santiago-García B,López-Varela E,Ledesma-Carbayo MJ

Affiliations (29)

  • Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain. [email protected].
  • Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. [email protected].
  • Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA. [email protected].
  • Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain. [email protected].
  • Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. [email protected].
  • Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA.
  • Departments of Radiology and Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.
  • Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain.
  • Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain.
  • Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
  • RITIP Translational Research Network in Pediatric Infectious Diseases, Madrid, Spain.
  • Desmond Tutu TB Centre, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa.
  • Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
  • Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
  • Department of Global Health, University of Washington, Seattle, WA, USA.
  • Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique.
  • Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.
  • ISGlobal, Hospital Clnic, Universitat de Barcelona, Barcelona, Spain.
  • Hospital Universitari General de Catalunya, Barcelona, Spain.
  • Radiología Pediátrica, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain.
  • Radiología Pediátrica, HM Hospitales, Madrid, Spain.
  • Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Department, Hospital Sant Joan de Déu Research Foundation, Barcelona, Spain.
  • Departament de Cirurgia i Especialitats Medicoquirúrgiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
  • Centro de Investigación Biomédica en Red de Epidemiologa y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
  • Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.
  • Pediatric Infectious Diseases Unit, Department of Pediatrics, Hospital Universitario 12 de Octubre, Madrid, Spain.
  • Universidad Complutense de Madrid, Madrid, Spain.
  • Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain. [email protected].
  • Centro de Investigación Biomédica en Red de Bioingeniera, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. [email protected].

Abstract

Tuberculosis (TB) remains a major global health burden, particularly in low-resource, high-prevalence regions. Pediatric TB diagnosis poses challenges with non-specific symptoms and less distinct radiological manifestations than adult TB. Many affected children remain undiagnosed or untreated. The World Health Organization (WHO) recommends chest X-ray (CXR) for TB screening and triage, given its accessibility and rapid assessment of pulmonary TB-related abnormalities. We present pTBLightNet, a multi-view deep learning framework to detect pediatric pulmonary TB by identifying TB-compatible CXRs with consistent radiological findings. Leveraging both frontal and lateral CXR views, our framework is pre-trained on adult CXR datasets (N = 114,173), then fine-tuned or trained from scratch, and subsequently evaluated on CXR datasets (N = 918) from three pediatric TB cohorts. It achieves an area under the curve (AUC) of 0.903 and 0.682 on internal and external testing, respectively. External evaluation supports its effectiveness and generalizability using CXR TB compatibility, expert reading, microbiological confirmation and case definition as reference standards. Age-specific models (<5 and 5-18 years) perform competitively with those trained on larger undifferentiated populations, and adding lateral CXRs improves diagnosis in younger children. These results highlight the robustness of our approach across age groups and its potential to improve TB diagnosis, particularly in resource-limited settings.

Topics

Deep LearningTuberculosis, PulmonaryRadiography, ThoracicJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.