Deep-learning reconstruction for noise reduction in respiratory-triggered single-shot phase sensitive inversion recovery myocardial delayed enhancement cardiac magnetic resonance.

Authors

Tang M,Wang H,Wang S,Wali E,Gutbrod J,Singh A,Landeras L,Janich MA,Mor-Avi V,Patel AR,Patel H

Affiliations (9)

  • Northwestern Medicine, Chicago, IL, United States of America.
  • GE HealthCare, Waukesha, WI, United States of America.
  • University of Virginia, VA, United States of America.
  • NorthShore University Health System, Evanston, IL, United States of America.
  • Washington University School of Medicine, St. Louis, MO, United States of America.
  • Northwestern Medicine Central DuPage Hospital, Chicago, IL, United States of America.
  • University of Chicago Medical Center, Chicago, IL, United States of America.
  • GE HealthCare, Munich, Germany.
  • University of Chicago Medical Center, Chicago, IL, United States of America. Electronic address: [email protected].

Abstract

Phase-sensitive inversion recovery late gadolinium enhancement (LGE) improves tissue contrast, however it is challenging to combine with a free-breathing acquisition. Deep-learning (DL) algorithms have growing applications in cardiac magnetic resonance imaging (CMR) to improve image quality. We compared a novel combination of a free-breathing single-shot phase-sensitive LGE with respiratory triggering (FB-PS) sequence with DL noise reduction reconstruction algorithm to a conventional segmented phase-sensitive LGE acquired during breath holding (BH-PS). 61 adult subjects (29 male, age 51 ± 15) underwent clinical CMR (1.5 T) with the FB-PS sequence and the conventional BH-PS sequence. DL noise reduction was incorporated into the image reconstruction pipeline. Qualitative metrics included image quality, artifact severity, diagnostic confidence. Quantitative metrics included septal-blood border sharpness, LGE sharpness, blood-myocardium apparent contrast-to-noise ratio (CNR), LGE-myocardium CNR, LGE apparent signal-to-noise ratio (SNR), and LGE burden. The sequences were compared via paired t-tests. 27 subjects had positive LGE. Average time to acquire a slice for FB-PS was 4-12 s versus ~32-38 s for BH-PS (including breath instructions and break time in between breath hold). FB-PS with medium DL noise reduction had better image quality (FB-PS 3.0 ± 0.7 vs. BH-PS 1.5 ± 0.6, p < 0.0001), less artifact (4.8 ± 0.5 vs. 3.4 ± 1.1, p < 0.0001), and higher diagnostic confidence (4.0 ± 0.6 vs. 2.6 ± 0.8, p < 0.0001). Septum sharpness in FB-PS with DL reconstruction versus BH-PS was not significantly different. There was no significant difference in LGE sharpness or LGE burden. FB-PS had superior blood-myocardium CNR (17.2 ± 6.9 vs. 16.4 ± 6.0, p = 0.040), LGE-myocardium CNR (12.1 ± 7.2 vs. 10.4 ± 6.6, p = 0.054), and LGE SNR (59.8 ± 26.8 vs. 31.2 ± 24.1, p < 0.001); these metrics further improved with DL noise reduction. A FB-PS sequence shortens scan time by over 5-fold and reduces motion artifact. Combined with a DL noise reduction algorithm, FB-PS provides better or similar image quality compared to BH-PS. This is a promising solution for patients who cannot hold their breath.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.