Managing class imbalance in the training of a large language model to predict patient selection for total knee arthroplasty: Results from the Artificial intelligence to Revolutionise the patient Care pathway in Hip and knEe aRthroplastY (ARCHERY) project.

Authors

Farrow L,Anderson L,Zhong M

Affiliations (2)

  • University of Aberdeen Institute of Applied Health Sciences, Aberdeen, UK. Electronic address: [email protected].
  • University of Aberdeen Institute of Applied Health Sciences, Aberdeen, UK.

Abstract

This study set out to test the efficacy of different techniques used to manage to class imbalance, a type of data bias, in application of a large language model (LLM) to predict patient selection for total knee arthroplasty (TKA). This study utilised data from the Artificial Intelligence to Revolutionise the Patient Care Pathway in Hip and Knee Arthroplasty (ARCHERY) project (ISRCTN18398037). Data included the pre-operative radiology reports of patients referred to secondary care for knee-related complaints from within the North of Scotland. A clinically based LLM (GatorTron) was trained regarding prediction of selection for TKA. Three methods for managing class imbalance were assessed: a standard model, use of class weighting, and majority class undersampling. A total of 7707 individual knee radiology reports were included (dated from 2015 to 2022). The mean text length was 74 words (range 26-275). Only 910/7707 (11.8%) patients underwent TKA surgery (the designated 'minority class'). Class weighting technique performed better for minority class discrimination and calibration compared with the other two techniques (Recall 0.61/AUROC 0.73 for class weighting compared with 0.54/0.70 and 0.59/0.72 for the standard model and majority class undersampling, respectively. There was also significant data loss for majority class undersampling when compared with class-weighting. Use of class-weighting appears to provide the optimal method of training a an LLM to perform analytical tasks on free-text clinical information in the face of significant data bias ('class imbalance'). Such knowledge is an important consideration in the development of high-performance clinical AI models within Trauma and Orthopaedics.

Topics

Arthroplasty, Replacement, KneeArtificial IntelligencePatient SelectionArthroplasty, Replacement, HipOsteoarthritis, KneeJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.