Prediction of plaque progression using different machine learning models of pericoronary adipose tissue radiomics based on coronary computed tomography angiography.
Authors
Affiliations (2)
Affiliations (2)
- Medical College of Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
- Department of Radiology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, Hubei 430070, China.
Abstract
To develop and validate the value of different machine learning models of pericoronary adipose tissue (PCAT) radiomics based on coronary computed tomography angiography (CCTA) for predicting coronary plaque progression (PP). This retrospective study evaluated 97 consecutive patients (with 127 plaques: 40 progressive and 87 nonprogressive) who underwent serial CCTA examinations. We analyzed conventional parameters and PCAT radiomics features. PCAT radiomics models were constructed using logistic regression (LR), K-nearest neighbors (KNN), and random forest (RF). Logistic regression analysis was applied to identify variables for developing conventional parameter models. Model performances were assessed by metrics including area under the curve (AUC), accuracy, sensitivity, and specificity. At baseline CCTA, 93 radiomics features were extracted from CCTA images. After dimensionality reduction and feature selection, two radiomics features were deemed valuable. Among radiomics models, we selected the RF as the optimal model in the training and validation sets (AUC = 0.971, 0.821). At follow-up CCTA, logistic regression analysis showed that increase in fat attenuation index (FAI) and decrease in PCAT volume were independent predictors of PP. The predictive capability of the combined model (increase in FAI + decrease in PCAT volume) was the best in the training and validation sets (AUC = 0.907, 0.882). At baseline CCTA, the RF-based PCAT radiomics model demonstrated excellent predictive ability for PP. Furthermore, at follow-up CCTA, our results indicated that both increase in FAI and decrease in PCAT volume can independently predict PP, and their combination provided enhanced predictive ability.