Back to all papers

Deep learning-based prediction of axillary pathological complete response in patients with breast cancer using longitudinal multiregional ultrasound.

Authors

Liu Y,Wang Y,Huang J,Pei S,Wang Y,Cui Y,Yan L,Yao M,Wang Y,Zhu Z,Huang C,Liu Z,Liang C,Shi J,Li Z,Pei X,Wu L

Affiliations (11)

  • Department of Ultrasound, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
  • Department of Medical Ultrasonics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, 510120, China.
  • Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
  • Department of Ultrasound, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China.
  • Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China.
  • Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China.
  • Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China.
  • Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China. Electronic address: [email protected].
  • Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China. Electronic address: [email protected].
  • Department of Medical Ultrasound, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. Electronic address: [email protected].
  • Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China. Electronic address: [email protected].

Abstract

Noninvasive biomarkers that capture the longitudinal multiregional tumour burden in patients with breast cancer may improve the assessment of residual nodal disease and guide axillary surgery. Additionally, a significant barrier to the clinical translation of the current data-driven deep learning model is the lack of interpretability. This study aims to develop and validate an information shared-private (iShape) model to predict axillary pathological complete response in patients with axillary lymph node (ALN)-positive breast cancer receiving neoadjuvant therapy (NAT) by learning common and specific image representations from longitudinal primary tumour and ALN ultrasound images. A total of 1135 patients with biopsy-proven ALN-positive breast cancer who received NAT were included in this multicentre, retrospective study. The iShape was trained on a dataset of 371 patients and validated on three external validation sets (EVS1-3), with 295, 244, and 225 patients, respectively. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). The false-negative rates (FNRs) of iShape alone and in combination with sentinel lymph node biopsy (SLNB) were also evaluated. Imaging feature visualisation and RNA sequencing analysis were performed to explore the underlying basis of iShape. The iShape achieved AUCs of 0.950-0.971 for EVS 1-3, which were better than those of the clinical model and the image signatures derived from the primary tumour, longitudinal primary tumour, or ALN (P < 0.05, as per the DeLong test). The performance of iShape remained satisfactory in subgroup analyses stratified by age, menstrual status, T stage, molecular subtype, treatment regimens, and machine type (AUCs of 0.812-1.000). More importantly, the FNR of iShape was 7.7%-8.1% in the EVSs, and the FNR of SLNB decreased from 13.4% to 3.6% with the aid of iShape in patients receiving SLNB and ALN dissection. The decision-making process of iShape was explained by feature visualisation. Additionally, RNA sequencing analysis revealed that a lower deep learning score was associated with immune infiltration and tumour proliferation pathways. The iShape model demonstrated good performance for the precise quantification of ALN status in patients with ALN-positive breast cancer receiving NAT, potentially benefiting individualised decision-making, and avoiding unnecessary axillary lymph node dissection. This study was supported by (1) Noncommunicable Chronic Diseases-National Science and Technology Major Project (No. 2024ZD0531100); (2) Key-Area Research and Development Program of Guangdong Province (No. 2021B0101420006); (3) National Natural Science Foundation of China (No. 82472051, 82471947, 82271941, 82272088); (4) National Science Foundation for Young Scientists of China (No. 82402270, 82202095, 82302190); (5) Guangzhou Municipal Science and Technology Planning Project (No. 2025A04J4773, 2025A04J4774); (6) the Natural Science Foundation of Guangdong Province of China (No. 2025A1515011607); (7) Medical Scientific Research Foundation of Guangdong Province of China (No. A2024403); (8) Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (No. 2022B1212010011); (9) Outstanding Youth Science Foundation of Yunnan Basic Research Project (No. 202401AY070001-316); (10) Innovative Research Team of Yunnan Province (No. 202505AS350013).

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.