Benign vs malignant tumors classification from tumor outlines in mammography scans using artificial intelligence techniques.
Authors
Affiliations (2)
Affiliations (2)
- Department of Biomedical Engineering, Ars. C., Islamic Azad University, Arsanjan, Iran. Electronic address: [email protected].
- Department of Biomedical Engineering, Ars. C., Islamic Azad University, Arsanjan, Iran.
Abstract
Breast cancer is one of the most important causes of death among women due to cancer. With the early diagnosis of this condition, the probability of survival will increase. For this purpose, medical imaging methods, especially mammography, are used for screening and early diagnosis of breast abnormalities. The main goal of this study is to distinguish benign or malignant tumors based on tumor morphology features extracted from tumor outlines extracted from mammography images. Unlike previous studies, this study does not use the mammographic image itself but only extracts the exact outline of the tumor. These outlines were extracted from a new and publicly available mammography database published in 2024. The features outlines were calculated using known pre-trained Convolutional Neural Networks (CNN), including VGG16, ResNet50, Xception65, AlexNet, DenseNet, GoogLeNet, Inception-v3, and a combination of them to improve performance. These pre-trained networks have been used in many studies in various fields. In the classification part, known Machine Learning (ML) algorithms, such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Neural Network (NN), Naïve Bayes (NB), Decision Tree (DT), and a combination of them have been compared in outcome measures, namely accuracy, specificity, sensitivity, and precision. Also, with the use of data augmentation, the dataset size was increased about 6-8 times, and the K-fold cross-validation technique (K = 5) was used in this study. Based on the performed simulations, a combination of the features from all pre-trained deep networks and the NB classifier resulted in the best possible outcomes with 88.13 % accuracy, 92.52 % specificity, 83.73 % sensitivity, and 92.04 % precision. Furthermore, validation on DMID dataset using ResNet50 features along with NB classifier, led to 92.03 % accuracy, 95.57 % specificity, 88.49 % sensitivity, and 95.23 % precision. This study sheds light on using AI algorithms to prevent biopsy tests and speed up breast cancer tumor classification using tumor outlines in mammographic images.