Advancements in biomedical rendering: A survey on AI-based denoising techniques.
Authors
Affiliations (2)
Affiliations (2)
- University of Florence, via di Santa Marta 3, Florence, 50139, Italy; Imaginalis S.R.L., via Rodolfo Morandi 13, Sesto Fiorentino, 50019, Italy. Electronic address: [email protected].
- University of Florence, via di Santa Marta 3, Florence, 50139, Italy.
Abstract
A recent investigation into deep learning-based denoising for early Monte Carlo (MC) Path Tracing in computed tomography (CT) volume visualization yielded promising quantitative outcomes but inconsistent qualitative assessments. This research probes the underlying causes of this incongruity by deploying a web-based SurveyMonkey questionnaire distributed among healthcare professionals. The survey targeted radiologists, residents, orthopedic surgeons, and veterinarians, leveraging the authors' professional networks for dissemination. To evaluate perceptions, the questionnaire featured randomized sections gauging attitudes towards AI-enhanced image and video quality, confidence in reference images, and clinical applicability. Seventy-four participants took part, encompassing a spectrum of experience levels: <1 year (n=11), 1-3 years (n=27), 3-5 years (n=12), and >5 years (n=24). A substantial majority (77%) expressed a preference for AI-enhanced images over traditional MC estimates, a preference influenced by participant experience (adjusted OR 0.81, 95% CI 0.67-0.98, p=0.033). Experience correlates with confidence in AI-generated images (adjusted OR 0.98, 95% CI 0.95-1, p=0.018-0.047) and satisfaction with video previews, both with and without AI (adjusted OR 0.96-0.98, 95% CI 0.92-1, p = 0.033-0.048). Significant monotonic relationships emerged between experience, confidence (σ= 0.25-0.26, p = 0.025-0.029), and satisfaction (σ= 0.23-0.24, p = 0.037-0.046). The findings underscore the potential of AI post-processing to improve the rendering of biomedical volumes, noting enhanced confidence and satisfaction among experienced participants. The study reveals that participants' preferences may not align perfectly with quality metrics such as peak signal-to-noise ratio and structural similarity index, highlighting nuances in evaluating AI's qualitative impact on CT image denoising.