Integrating prior knowledge with deep learning for optimized quality control in corneal images: A multicenter study.
Authors
Affiliations (5)
Affiliations (5)
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, PR China.
- Beijing Normal University, School of Artificial Intelligence, Beijing, PR China.
- The First People's Hospital of Aksu District in Xinjiang, Aksu, PR China.
- Aier Guangming Eye Hospital, Ningbo, PR China. Electronic address: [email protected].
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, PR China. Electronic address: [email protected].
Abstract
Artificial intelligence (AI) models are effective for analyzing high-quality slit-lamp images but often face challenges in real-world clinical settings due to image variability. This study aims to develop and evaluate a hybrid AI-based image quality control system to classify slit-lamp images, improving diagnostic accuracy and efficiency, particularly in telemedicine applications. Cross-sectional study. Our Zhejiang Eye Hospital dataset comprised 2982 slit-lamp images as the internal dataset. Two external datasets were included: 13,554 images from the Aier Guangming Eye Hospital (AGEH) and 9853 images from the First People's Hospital of Aksu District in Xinjiang (FPH of Aksu). We developed a Hybrid Prior-Net (HP-Net), a novel network that combines a ResNet-based classification branch with a prior knowledge branch leveraging Hough circle transform and frequency domain blur detection. The two branches' features are channel-wise concatenated at the fully connected layer, enhancing representational power and improving the network's ability to classify eligible, misaligned, blurred, and underexposed corneal images. Model performance was evaluated using metrics such as accuracy, precision, recall, specificity, and F1-score, and compared against the performance of other deep learning models. The HP-Net outperformed all other models, achieving an accuracy of 99.03 %, precision of 98.21 %, recall of 95.18 %, specificity of 99.36 %, and an F1-score of 96.54 % in image classification. The results demonstrated that HP-Net was also highly effective in filtering slit-lamp images from the other two datasets, AGEH and FPH of Aksu with accuracies of 97.23 % and 96.97 %, respectively. These results underscore the superior feature extraction and classification capabilities of HP-Net across all evaluated metrics. Our AI-based image quality control system offers a robust and efficient solution for classifying corneal images, with significant implications for telemedicine applications. By incorporating slightly blurred but diagnostically usable images into training datasets, the system enhances the reliability and adaptability of AI tools for medical imaging quality control, paving the way for more accurate and efficient diagnostic workflows.