Dual-Modality Virtual Biopsy System Integrating MRI and MG for Noninvasive Predicting HER2 Status in Breast Cancer.
Authors
Affiliations (4)
Affiliations (4)
- Department of Radiology, The Affiliated Huai'an Clinical College of Xuzhou Medical University, Huai'an, Jiangsu Province, China (Q.W., C.-C.H., H.-W.X., G.-J.B.).
- Department of Radiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu Province, China (Z.-Q.Z.).
- Department of Radiology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (H.Z., F.B., W.-T.G., W.Z.).
- Department of Radiology, The Affiliated Huai'an Clinical College of Xuzhou Medical University, Huai'an, Jiangsu Province, China (Q.W., C.-C.H., H.-W.X., G.-J.B.). Electronic address: [email protected].
Abstract
Accurate determination of human epidermal growth factor receptor 2 (HER2) expression is critical for guiding targeted therapy in breast cancer. This study aimed to develop and validate a deep learning (DL)-based decision-making visual biomarker system (DM-VBS) for predicting HER2 status using radiomics and DL features derived from magnetic resonance imaging (MRI) and mammography (MG). Radiomics features were extracted from MRI, and DL features were derived from MG. Four submodels were constructed: Model I (MRI-radiomics) and Model III (mammography-DL) for distinguishing HER2-zero/low from HER2-positive cases, and Model II (MRI-radiomics) and Model IV (mammography-DL) for differentiating HER2-zero from HER2-low/positive cases. These submodels were integrated into a XGBoost model for ternary classification of HER2 status. Radiologists assessed imaging features associated with HER2 expression, and model performance was validated using two independent datasets from The Cancer Image Archive. A total of 550 patients were divided into training, internal validation, and external validation cohorts. Models I and III achieved an area under the curve (AUC) of 0.800-0.850 for distinguishing HER2-zero/low from HER2-positive cases, while Models II and IV demonstrated AUC values of 0.793-0.847 for differentiating HER2-zero from HER2-low/positive cases. The DM-VBS achieved average accuracy of 85.42%, 80.4%, and 89.68% for HER2-zero, -low, and -positive patients in the validation cohorts, respectively. Imaging features such as lesion size, number of lesions, enhancement type, and microcalcifications significantly differed across HER2 statuses, except between HER2-zero and -low groups. DM-VBS can predict HER2 status and assist clinicians in making treatment decisions for breast cancer.