Back to all papers

Annotation-efficient deep learning detection and measurement of mediastinal lymph nodes in CT.

Authors

Olesinski A,Lederman R,Azraq Y,Sosna J,Joskowicz L

Affiliations (3)

  • School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
  • Department of Radiology, Hadassah University Medical Center, Jerusalem, Israel.
  • School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel. [email protected].

Abstract

Manual detection and measurement of structures in volumetric scans is routine in clinical practice but is time-consuming and subject to observer variability. Automatic deep learning-based solutions are effective but require a large dataset of manual annotations by experts. We present a novel annotation-efficient semi-supervised deep learning method for automatic detection, segmentation, and measurement of the short axis length (SAL) of mediastinal lymph nodes (LNs) in contrast-enhanced CT (ceCT) scans. Our semi-supervised method combines the precision of expert annotations with the quantity advantages of pseudolabeled data. It uses an ensemble of 3D nnU-Net models trained on a few expert-annotated scans to generate pseudolabels on a large dataset of unannotated scans. The pseudolabels are then filtered to remove false positive LNs by excluding LNs outside the mediastinum and LNs overlapping with other anatomical structures. Finally, a single 3D nnU-Net model is trained using the filtered pseudo-labels. Our method optimizes the ratio of annotated/non-annotated dataset sizes to achieve the desired performance, thus reducing manual annotation effort. Experimental studies on three chest ceCT datasets with a total of 268 annotated scans (1817 LNs), of which 134 scans were used for testing and the remaining for ensemble training in batches of 17, 34, 67, and 134 scans, as well as 710 unannotated scans, show that the semi-supervised models' recall improvements were 11-24% (0.72-0.87) while maintaining comparable precision levels. The best model achieved mean SAL differences of 1.65 ± 0.92 mm for normal LNs and 4.25 ± 4.98 mm for enlarged LNs, both within the observer variability. Our semi-supervised method requires one-fourth to one-eighth less annotations to achieve a performance to supervised models trained on the same dataset for the automatic measurement of mediastinal LNs in chest ceCT. Using pseudolabels with anatomical filtering may be effective to overcome the challenges of the development of AI-based solutions in radiology.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.