Back to all papers

Utility of machine learning for predicting severe chronic thromboembolic pulmonary hypertension based on CT metrics in a surgical cohort.

Authors

Grubert Van Iderstine M,Kim S,Karur GR,Granton J,de Perrot M,McIntosh C,McInnis M

Affiliations (8)

  • Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.
  • Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
  • University Medical Imaging Toronto, Toronto General Hospital, Toronto, Ontario, Canada.
  • Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.
  • Division of Thoracic Surgery, Department of Surgery, University Health Network, Toronto, Ontario, Canada.
  • Toronto General Research Institute, University Health Network, Toronto, Canada.
  • Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada. [email protected].
  • University Medical Imaging Toronto, Toronto General Hospital, Toronto, Ontario, Canada. [email protected].

Abstract

The aim of this study was to develop machine learning (ML) models to explore the relationship between chronic pulmonary embolism (PE) burden and severe pulmonary hypertension (PH) in surgical chronic thromboembolic pulmonary hypertension (CTEPH). CTEPH patients with a preoperative CT pulmonary angiogram and pulmonary endarterectomy between 01/2017 and 06/2022 were included. A mean pulmonary artery pressure of > 50 mmHg was classified as severe. CTs were scored by a blinded radiologist who recorded chronic pulmonary embolism extent in detail, and measured the right ventricle (RV), left ventricle (LV), main pulmonary artery (PA) and ascending aorta (Ao) diameters. XGBoost models were developed to identify CTEPH feature importance and compared to a logistic regression model. There were 184 patients included; 54.9% were female, and 21.7% had severe PH. The average age was 57 ± 15 years. PE burden alone was not helpful in identifying severe PH. The RV/LV ratio logistic regression model performed well (AUC 0.76) with a cutoff of 1.4. A baseline ML model (Model 1) including only the RV, LV, Pa and Ao measures and their ratios yielded an average AUC of 0.66 ± 0.10. The addition of demographics and statistics summarizing the CT findings raised the AUC to 0.75 ± 0.08 (F1 score 0.41). While measures of PE burden had little bearing on PH severity independently, the RV/LV ratio, extent of disease in various segments, total webs observed, and patient demographics improved performance of machine learning models in identifying severe PH. Question Can machine learning methods applied to CT-based cardiac measurements and detailed maps of chronic thromboembolism type and distribution predict pulmonary hypertension (PH) severity? Findings The right-to-left ventricle (RV/LV) ratio was predictive of PH severity with an optimal cutoff of 1.4, and detailed accounts of chronic thromboembolic burden improved model performance. Clinical relevance The identification of a CT-based RV/LV ratio cutoff of 1.4 gives radiologists, clinicians, and patients a point of reference for chronic thromboembolic PH severity. Detailed chronic thromboembolic burden data are useful but cannot be used alone to predict PH severity.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.