Performance of fully automated deep-learning-based coronary artery calcium scoring in ECG-gated calcium CT and non-gated low-dose chest CT.

May 10, 2025pubmed logopapers

Authors

Kim S,Park EA,Ahn C,Jeong B,Lee YS,Lee W,Kim JH

Affiliations (8)

  • Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
  • ClariPi Research, Seoul, Republic of Korea.
  • Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea. [email protected].
  • Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea. [email protected].
  • Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea. [email protected].
  • Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
  • Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
  • Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.

Abstract

This study aimed to validate the agreement and diagnostic performance of a deep-learning-based coronary artery calcium scoring (DL-CACS) system for ECG-gated and non-gated low-dose chest CT (LDCT) across multivendor datasets. In this retrospective study, datasets from Seoul National University Hospital (SNUH, 652 paired ECG-gated and non-gated CT scans) and the Stanford public dataset (425 ECG-gated and 199 non-gated CT scans) were analyzed. Agreement metrics included intraclass correlation coefficient (ICC), coefficient of determination (R²), and categorical agreement (κ). Diagnostic performance was assessed using categorical accuracy and the area under the receiver operating characteristic curve (AUROC). DL-CACS demonstrated excellent performance for ECG-gated CT in both datasets (SNUH: R² = 0.995, ICC = 0.997, κ = 0.97, AUROC = 0.99; Stanford: R² = 0.989, ICC = 0.990, κ = 0.97, AUROC = 0.99). For non-gated CT using manual LDCT CAC scores as a reference, performance was similarly high (R² = 0.988, ICC = 0.994, κ = 0.96, AUROC = 0.98-0.99). When using ECG-gated CT scores as the reference, performance for non-gated CT was slightly lower but remained robust (SNUH: R² = 0.948, ICC = 0.968, κ = 0.88, AUROC = 0.98-0.99; Stanford: R² = 0.949, ICC = 0.948, κ = 0.71, AUROC = 0.89-0.98). DL-CACS provides a reliable and automated solution for CACS, potentially reducing workload while maintaining robust performance in both ECG-gated and non-gated CT settings. Question How accurate and reliable is deep-learning-based coronary artery calcium scoring (DL-CACS) in ECG-gated CT and non-gated low-dose chest CT (LDCT) across multivendor datasets? Findings DL-CACS showed near-perfect performance for ECG-gated CT. For non-gated LDCT, performance was excellent using manual scores as the reference and lower but reliable when using ECG-gated CT scores. Clinical relevance DL-CACS provides a reliable and automated solution for CACS, potentially reducing workload and improving diagnostic workflow. It supports cardiovascular risk stratification and broader clinical adoption, especially in settings where ECG-gated CT is unavailable.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.