Opportunistic assessment of osteoporosis using hip and pelvic X-rays with OsteoSight™: validation of an AI-based tool in a US population.

Authors

Pignolo RJ,Connell JJ,Briggs W,Kelly CJ,Tromans C,Sultana N,Brady JM

Affiliations (3)

  • Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
  • Naitive Technologies Ltd, London, EC1N 2SW, UK. [email protected].
  • Naitive Technologies Ltd, London, EC1N 2SW, UK.

Abstract

Identifying patients at risk of low bone mineral density (BMD) from X-rays presents an attractive approach to increase case finding. This paper showed the diagnostic accuracy, reproducibility, and robustness of a new technology: OsteoSight™. OsteoSight could increase diagnosis and preventive treatment rates for patients with low BMD. This study aimed to evaluate the diagnostic accuracy, reproducibility, and robustness of OsteoSight™, an automated image analysis tool designed to identify low bone mineral density (BMD) from routine hip and pelvic X-rays. Given the global rise in osteoporosis-related fractures and the limitations of current diagnostic paradigms, OsteoSight offers a scalable solution that integrates into existing clinical workflows. Performance of the technology was tested across three key areas: (1) diagnostic accuracy in identifying low BMD as compared to dual-energy X-ray absorptiometry (DXA), the clinical gold standard; (2) reproducibility, through analysis of two images from the same patient; and (3) robustness, by evaluating the tool's performance across different patient demographics and X-ray scanner hardware. The diagnostic accuracy of OsteoSight for identifying patients at risk of low BMD was area under the receiver operating characteristic curve (AUROC) 0.834 [0.789-0.880], with consistent results across subgroups of clinical confounders and X-ray scanner hardware. Specificity 0.852 [0.783-0.930] and sensitivity 0.628 [0.538-0.743] met pre-specified acceptance criteria. The pre-processing pipeline successfully excluded unsuitable cases including incorrect body parts, metalwork, and unacceptable femur positioning. The results demonstrate that OsteoSight is accurate in identifying patients with low BMD. This suggests its utility as an opportunistic assessment tool, especially in settings where DXA accessibility is limited or not recently performed. The tool's reproducibility and robust performance across various clinical confounders further supports its integration into routine orthopedic and medical practices, potentially broadening the reach of osteoporosis assessment and enabling earlier intervention for at-risk patients.

Topics

OsteoporosisHip JointPelvic BonesJournal ArticleValidation Study

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.