GPT-4o and Specialized AI in Breast Ultrasound Imaging: A comparative Study on Accuracy, Agreement, Limitations, and Diagnostic Potential.
Authors
Affiliations (4)
Affiliations (4)
- Department of Radiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
- Department of General Surgery, Abdulkadir Yuksel State Hospital, Gaziantep, Turkey.
- Department of Family of Medicine, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
Abstract
This study aimed to evaluate the ability of ChatGPT and Breast Ultrasound Helper, a special ChatGPT-based subprogram trained on ultrasound image analysis, to analyze and differentiate benign and malignant breast lesions on ultrasound images. Ultrasound images of histopathologically confirmed breast cancer and fibroadenoma patients were read GPT-4o (the latest ChatGPT version) and Breast Ultrasound Helper (BUH), a tool from the "Explore" section of ChatGPT. Both were prompted in English using ACR BI-RADS Breast Ultrasound Lexicon criteria: lesion shape, orientation, margin, internal echo pattern, echogenicity, posterior acoustic features, microcalcifications or hyperechoic foci, perilesional hyperechoic rim, edema or architectural distortion, lesion size, and BI-RADS category. Two experienced radiologists evaluated the images and the responses of the programs in consensus. The outputs, BI-RADS category agreement, and benign/malignant discrimination were statistically compared. A total of 232 ultrasound images were analyzed, of which 133 (57.3%) were malignant and 99 (42.7%) benign. In comparative analysis, BUH showed superior performance overall, with higher kappa values and statistically significant results across multiple features (P .001). However, the overall level of agreement with the radiologists' consensus for all features was similar for BUH (κ: 0.387-0.755) and GPT-4o (κ: 0.317-0.803). On the other hand, BI-RADS category agreement was slightly higher in GPT-4o than in BUH (69.4% versus 65.9%), but BUH was slightly more successful in distinguishing benign lesions from malignant lesions (65.9% versus 67.7%). Although both AI tools show moderate-good performance in ultrasound image analysis, their limited compatibility with radiologists' evaluations and BI-RADS categorization suggests that their clinical application in breast ultrasound interpretation is still early and unreliable.