AI in Orthopedic Research: A Comprehensive Review.
Authors
Affiliations (2)
Affiliations (2)
- Department of Orthopedics and Traumatology, Bahcesehir University School of Medicine, Istanbul, Turkey.
- Department of Orthopedics and Traumatology, Health Sciences University Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey.
Abstract
Artificial intelligence (AI) is revolutionizing orthopedic research and clinical practice by enhancing diagnostic accuracy, optimizing treatment strategies, and streamlining clinical workflows. Recent advances in deep learning have enabled the development of algorithms that detect fractures, grade osteoarthritis, and identify subtle pathologies in radiographic and magnetic resonance images with performance comparable to expert clinicians. These AI-driven systems reduce missed diagnoses and provide objective, reproducible assessments that facilitate early intervention and personalized treatment planning. Moreover, AI has made significant strides in predictive analytics by integrating diverse patient data-including gait and imaging features-to forecast surgical outcomes, implant survivorship, and rehabilitation trajectories. Emerging applications in robotics, augmented reality, digital twin technologies, and exoskeleton control promise to further transform preoperative planning and intraoperative guidance. Despite these promising developments, challenges such as data heterogeneity, algorithmic bias, and the "black box" nature of many models-as well as issues with robust validation-remain. This comprehensive review synthesizes current developments, critically examines limitations, and outlines future directions for integrating AI into musculoskeletal care.