Advanced large language models like GPT-4 accurately identify thoracic diseases in chest CT reports, enhancing pre-operative surgical planning.
Key Details
- 1Five LLMs (GPT-4, Claude-3.5, Qwen-Max, GPT-3.5-Turbo, Gemini-Pro) compared using 13,489 real-world chest CT reports.
- 2GPT-4 achieved up to 75% accuracy in identifying 13 common chest diseases with multiple-choice prompts.
- 3Multiple-choice prompts significantly improved model accuracy compared to open-ended questions.
- 4Fine-tuning GPT-3.5-Turbo increased its accuracy from 42% to 65% in challenging cases.
- 5No single LLM was best for all diseases, suggesting a tailored approach may be optimal.
- 6Future research will use explainable AI tools to increase transparency and reliability.
Why It Matters

Source
EurekAlert
Related News

AI Model Improves Differentiation of Brain Tumor Progression from Radiation Necrosis on MRI
A York University-led study shows a novel AI using advanced MRI can distinguish between progressive brain tumors and radiation necrosis more accurately than human assessment.

AutoML Model Accurately Differentiates Brain Tumors on MRI
Thomas Jefferson University researchers developed an AutoML model that distinguishes pituitary macroadenomas from parasellar meningiomas on MRI with over 97% accuracy.

Survey: Public Trusts Doctors Over AI, But Embraces AI For Cancer Diagnosis
Most people trust doctors more than AI for health diagnoses, but see significant potential for AI tools in cancer detection.