Advanced large language models like GPT-4 accurately identify thoracic diseases in chest CT reports, enhancing pre-operative surgical planning.
Key Details
- 1Five LLMs (GPT-4, Claude-3.5, Qwen-Max, GPT-3.5-Turbo, Gemini-Pro) compared using 13,489 real-world chest CT reports.
- 2GPT-4 achieved up to 75% accuracy in identifying 13 common chest diseases with multiple-choice prompts.
- 3Multiple-choice prompts significantly improved model accuracy compared to open-ended questions.
- 4Fine-tuning GPT-3.5-Turbo increased its accuracy from 42% to 65% in challenging cases.
- 5No single LLM was best for all diseases, suggesting a tailored approach may be optimal.
- 6Future research will use explainable AI tools to increase transparency and reliability.
Why It Matters
The study demonstrates that modern LLMs can act as accurate 'second readers' for radiology reports, possibly reducing diagnostic errors and alleviating radiologist workload. Fine-tuning and prompt design further boost performance, potentially making AI support accessible even in resource-limited settings.

Source
EurekAlert
Related News

•EurekAlert
Imaging Reveals Skull Changes and Immune Impact in Glioblastoma
Advanced imaging uncovers that glioblastoma affects the skull and immune system, not just the brain.

•EurekAlert
AI-Based CT Analysis Predicts Outcomes in Fibrotic Lung Disease
AI analysis of one-year CT changes predicts disease progression and survival in fibrotic interstitial lung disease.

•EurekAlert
AI and Multiphoton Microscopy Achieve 96% Accuracy in Pancreatic Tumor Detection
University of Arizona researchers combined label-free multiphoton microscopy with neural networks to accurately classify pancreatic neuroendocrine neoplasms in tissue samples.