Advanced large language models like GPT-4 accurately identify thoracic diseases in chest CT reports, enhancing pre-operative surgical planning.
Key Details
- 1Five LLMs (GPT-4, Claude-3.5, Qwen-Max, GPT-3.5-Turbo, Gemini-Pro) compared using 13,489 real-world chest CT reports.
- 2GPT-4 achieved up to 75% accuracy in identifying 13 common chest diseases with multiple-choice prompts.
- 3Multiple-choice prompts significantly improved model accuracy compared to open-ended questions.
- 4Fine-tuning GPT-3.5-Turbo increased its accuracy from 42% to 65% in challenging cases.
- 5No single LLM was best for all diseases, suggesting a tailored approach may be optimal.
- 6Future research will use explainable AI tools to increase transparency and reliability.
Why It Matters

Source
EurekAlert
Related News

MAGIC AI System Enables High-Throughput Cancer Cell Imaging and Analysis
Researchers developed MAGIC, an AI-based system integrating automated microscopy and genomics to study chromosomal abnormalities linked to cancer.

AI Accelerates Solid Tumor Drug Development and Personalized Oncology
AI is expediting the timeline and personalization of solid tumor drug development using multi-omics, imaging, and advanced computational models.

Biodegradable Wearable Sensor with AI Enables Interference-Free Respiration Monitoring
Researchers developed a biodegradable, interference-resistant smart mask sensor with AI-driven respiratory classification capability.