
A state-of-the-art review highlights the use of multimodal imaging and AI to improve diagnosis and management of radiation-induced brain injury (RIBI).
Key Details
- 1Radiation-induced brain injury (RIBI) is a complex complication following cranial radiotherapy, impacting neurological function and quality of life.
- 2Multimodal imaging methods—including structural/functional MRI, diffusion and perfusion imaging, PET/CT, and radiomics—enhance early detection and differential diagnosis of RIBI versus tumor recurrence.
- 3AI techniques and machine learning models enable extraction of quantitative features, promising improved non-invasive diagnosis accuracy.
- 4Current interventions are shifting towards targeted, mechanism-driven therapies; Bevacizumab remains the only validated drug for radiation necrosis, while experimental approaches like stem cell therapy and neuromodulation are under study.
- 5Major challenges include lack of unified diagnostic criteria, early biomarkers, and seamless clinical integration of multimodal imaging and AI.
- 6The article calls for standardized protocols, expanded research, and multidisciplinary collaboration to achieve precision management.
Why It Matters

Source
EurekAlert
Related News

AI and Advanced Microscopy Unveil Cell's Exocytosis Nanomachine
Researchers have discovered the ExHOS nanomachine responsible for constitutive exocytosis using advanced microscopy and AI-enhanced image analysis.

Physical Activity Linked to Breast Tissue Biomarkers in Teens
A study links adolescent recreational physical activity to changes in breast tissue composition and stress biomarkers, potentially impacting future breast cancer risk.

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.