Stanford-led researchers unveil advanced optical imaging technology to visualize neuron-specific brain waves, revealing novel propagation patterns in mice.
Key Details
- 1Two ultra-sensitive optical instruments detect genetically engineered voltage indicators in mice brains.
- 2Technology enables real-time imaging of brain waves with neuron-type specificity and high spatial resolution (up to 8 mm-wide images).
- 3Researchers discovered three previously unknown brain wave types, including novel beta and theta wave directions.
- 4Findings offer insights into diseases like epilepsy, Alzheimer’s, and Parkinson’s, and potential inspiration for AI models.
- 5Study published in Cell (DOI: 10.1016/j.cell.2025.06.028), supported by NIH funding and Stanford/Allen Institute collaborations.
Why It Matters

Source
EurekAlert
Related News

Advancements in CRC Screening: Imaging, AI, and Point-of-Care Diagnostics
Recent innovations in colorectal cancer screening include advanced imaging, AI tools, and novel diagnostics to improve early detection and outcomes.

AI Model Improves Prediction of Knee Osteoarthritis Progression Using MRI and Biomarkers
A new AI-assisted model that combines MRI, biochemical, and clinical data improves predictions of worsening knee osteoarthritis.

AI Trains on Pathologists’ Eye Movements to Improve Biopsy Analysis
Researchers developed a deep learning system using eye-tracking data to enhance AI-powered biopsy image interpretation.