Stanford-led researchers unveil advanced optical imaging technology to visualize neuron-specific brain waves, revealing novel propagation patterns in mice.
Key Details
- 1Two ultra-sensitive optical instruments detect genetically engineered voltage indicators in mice brains.
- 2Technology enables real-time imaging of brain waves with neuron-type specificity and high spatial resolution (up to 8 mm-wide images).
- 3Researchers discovered three previously unknown brain wave types, including novel beta and theta wave directions.
- 4Findings offer insights into diseases like epilepsy, Alzheimer’s, and Parkinson’s, and potential inspiration for AI models.
- 5Study published in Cell (DOI: 10.1016/j.cell.2025.06.028), supported by NIH funding and Stanford/Allen Institute collaborations.
Why It Matters

Source
EurekAlert
Related News

AI Model Improves Differentiation of Brain Tumor Progression from Radiation Necrosis on MRI
A York University-led study shows a novel AI using advanced MRI can distinguish between progressive brain tumors and radiation necrosis more accurately than human assessment.

AutoML Model Accurately Differentiates Brain Tumors on MRI
Thomas Jefferson University researchers developed an AutoML model that distinguishes pituitary macroadenomas from parasellar meningiomas on MRI with over 97% accuracy.

Survey: Public Trusts Doctors Over AI, But Embraces AI For Cancer Diagnosis
Most people trust doctors more than AI for health diagnoses, but see significant potential for AI tools in cancer detection.