LLMs like ChatGPT-4o and AmbossGPT can accurately classify bone fractures in CT radiology reports, aiding radiologists.
Key Details
- 1Study assessed four LLMs (ChatGPT-4o, AmbossGPT, Claude 3.5 Sonnet, Gemini 2.0 Flash) on 292 artificial CT reports representing 310 fractures.
- 2ChatGPT-4o and AmbossGPT showed highest overall classification accuracy (74.6% and 74.3%).
- 3Bone recognition rates were high for all models (90%-99%), but fracture subtype classification was lower (71%-77%).
- 4Statistically significant accuracy differences were noted between LLMs by fracture type and anatomical location.
- 5Validation with real-world reports (145 fractures) using LLaMA 3.3-70B yielded similar results to artificial datasets (~70% performance).
- 6Authors note need for further validation on large, multi-center real-world datasets.
Why It Matters
Radiology practices rely heavily on textual reporting, and automating fracture classification could streamline radiological workflows, reduce variability, and improve efficiency. While current LLMs show promise, further validation is necessary before widespread adoption.

Source
AuntMinnie
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.