Researchers found ChatGPT-4 Turbo could efficiently monitor the performance of Aidoc's ICH detection AI across real-world radiology practices.
Key Details
- 1Study used ChatGPT-4 Turbo to monitor Aidoc's intracranial hemorrhage (ICH) detection on 332,809 head CT exams from 37 sites.
- 2Compared LLM data extraction to a ground-truth set of 1,000 radiologist-labeled reports.
- 3LLM achieved 0.995 accuracy, 0.99 AUC, PPV of 1, and NPV of 0.98.
- 4Discordant cases were mostly due to Aidoc overcalls; only 0.5% due to LLM extraction error.
- 5Aidoc AI's performance varied across CT scanner models and was influenced by scanner manufacturer, exam artifacts, and patient symptoms.
- 6Authors emphasized that LLM monitoring is cost-effective and scalable compared to manual review.
Why It Matters
Reliable, scalable solutions for performance monitoring are crucial as AI tools become increasingly common in radiological practice. Using large language models like ChatGPT could streamline postdeployment quality assurance and ensure ongoing diagnostic accuracy.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

•HealthExec
US Executive Order and HHS Strategy Set AI Policy Directions for Healthcare
The White House executive order and new HHS strategy shift US policy towards unified AI standards and expanded adoption in healthcare.