
A new study evaluates the diagnostic accuracy of three leading generative multimodal AI models in interpreting CT images for lung cancer detection.
Key Details
- 1Three models compared: Gemini-pro-vision (Google), Claude-3-opus (Anthropic), and GPT-4-turbo (OpenAI).
- 2On 184 malignant lung cases, Gemini achieved highest single-image accuracy (>90%), followed by Claude-3-opus, GPT lowest (65.2%).
- 3Gemini's performance dropped to 58.5% with continuous CT slices, indicating challenges with spatial reasoning in imaging.
- 4Simplified text prompts improved diagnostic AUCs: Gemini (0.76), GPT (0.73), and Claude (0.69).
- 5Claude-3-opus showed superior consistency and lower variation in lesion feature analysis.
- 6External validation with TCGA and MIDRC datasets supported findings, especially with simplified prompt strategies.
Why It Matters
This benchmark provides essential insight into the current capabilities and limitations of leading multimodal LLMs for radiological image analysis. Understanding model strengths, weaknesses, and prompt engineering strategies will guide their optimal integration into clinical workflows.

Source
EurekAlert
Related News

•EurekAlert
AI Model Accurately Flags Brain MRI Abnormalities, Eases Radiologist Burden
A new AI model can accurately flag brain abnormalities in MRI scans, potentially streamlining triage and diagnosis for radiologists.

•EurekAlert
MD Anderson Unveils New AI Genomics Insights and Therapeutic Advances
MD Anderson reports breakthroughs in cancer therapeutics and provides critical insights into AI models for genomic analysis.

•EurekAlert
UCLA Researchers Present AI, Blood Biomarker Advances at SABCS 2025
UCLA Health researchers unveil major advances in breast cancer AI pathology, liquid biopsy, and biomarker strategies at the 2025 SABCS.