
Researchers developed BioCompNet, a dual-sequence AI system that automates body composition measurement from MRI scans for improved cardiometabolic risk management.
Key Details
- 1BioCompNet uses a dual-channel 2D U-Net framework to process fat- and water-sequence MRI for abdominal and thigh segmentation.
- 2It quantifies 15 key body composition components automatically, including muscle, bone, and various fat compartments.
- 3Tested on 503 subjects internally and 30 cases externally, it achieved mean Dice scores of 0.938 (abdomen) and 0.936 (thigh) with strong physician agreement (ICC 0.881–0.999).
- 4Automated processing takes 0.12 minutes per case, compared to 128.8 minutes manually, enabling large-scale studies.
- 5Limitations include the need for broader validation across populations, refinement of clinical integration, and multicenter studies for further generalizability.
Why It Matters

Source
EurekAlert
Related News

AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.