
Radiologists using AI visual cues are more likely to identify breast cancers on mammograms, as revealed by eye-tracking analysis.
Key Details
- 1Study published in RSNA's journal Radiology.
- 2Researchers used camera-based eye-tracking to observe 12 radiologists interpreting 150 mammograms (75 malignant, 75 benign).
- 3AI decision support highlighted suspicious areas and assigned malignancy likelihood scores (0-100).
- 4Eye-tracking identified where and how long readers focused on specific image regions with and without AI support.
- 5AI support altered reading patterns and improved cancer detection.
Why It Matters

Source
Health Imaging
Related News

Women's Uncertainty About AI in Breast Imaging May Limit Acceptance
Many women remain unclear about the role of AI in breast imaging, creating hesitation toward its adoption.

Stanford Team Introduces Real-Time AI Safety Monitoring for Radiology
Stanford researchers introduced an ensemble monitoring model to provide real-time confidence assessments for FDA-cleared radiology AI tools.

Head-to-Head Study Evaluates AI Accuracy in Fracture Detection on X-Ray
A prospective study compared three commercial AI tools for fracture detection on x-ray, showing moderate-to-high accuracy for simple cases but weaker performance in complex scenarios.