Radiologists using AI visual cues are more likely to identify breast cancers on mammograms, as revealed by eye-tracking analysis.
Key Details
- 1Study published in RSNA's journal Radiology.
- 2Researchers used camera-based eye-tracking to observe 12 radiologists interpreting 150 mammograms (75 malignant, 75 benign).
- 3AI decision support highlighted suspicious areas and assigned malignancy likelihood scores (0-100).
- 4Eye-tracking identified where and how long readers focused on specific image regions with and without AI support.
- 5AI support altered reading patterns and improved cancer detection.
Why It Matters
This study provides concrete evidence that AI tools not only assist radiologists with detection but also change how they visually interact with imaging, which could lead to more effective mammography interpretation and ultimately improve breast cancer outcomes.

Source
Health Imaging
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.