
Researchers have developed an AI model that accurately predicts which keratoconus patients require treatment by analyzing OCT eye scans and clinical data.
Key Details
- 1Study presented at the 43rd Congress of the European Society of Cataract and Refractive Surgeons (ESCRS).
- 2AI analyzed 36,673 OCT images from 6,684 patients with keratoconus.
- 3Algorithm could stratify two-thirds of patients as low-risk and one-third as high-risk for disease progression using data from a single visit.
- 4Including data from a second visit increased prediction accuracy to up to 90% of patients correctly categorized.
- 5Cross-linking treatment prevents vision loss and corneal transplantation in most cases if given early.
- 6Algorithm will undergo further safety testing before clinical deployment; researchers plan to expand to other eye conditions.
Why It Matters

Source
EurekAlert
Related News

AutoML Model Accurately Differentiates Brain Tumors on MRI
Thomas Jefferson University researchers developed an AutoML model that distinguishes pituitary macroadenomas from parasellar meningiomas on MRI with over 97% accuracy.

AI Model Improves Differentiation of Brain Tumor Progression from Radiation Necrosis on MRI
A York University-led study shows a novel AI using advanced MRI can distinguish between progressive brain tumors and radiation necrosis more accurately than human assessment.

Survey: Public Trusts Doctors Over AI, But Embraces AI For Cancer Diagnosis
Most people trust doctors more than AI for health diagnoses, but see significant potential for AI tools in cancer detection.