
Researchers have developed an AI model that accurately predicts which keratoconus patients require treatment by analyzing OCT eye scans and clinical data.
Key Details
- 1Study presented at the 43rd Congress of the European Society of Cataract and Refractive Surgeons (ESCRS).
- 2AI analyzed 36,673 OCT images from 6,684 patients with keratoconus.
- 3Algorithm could stratify two-thirds of patients as low-risk and one-third as high-risk for disease progression using data from a single visit.
- 4Including data from a second visit increased prediction accuracy to up to 90% of patients correctly categorized.
- 5Cross-linking treatment prevents vision loss and corneal transplantation in most cases if given early.
- 6Algorithm will undergo further safety testing before clinical deployment; researchers plan to expand to other eye conditions.
Why It Matters

Source
EurekAlert
Related News

Mammogram-AI Accurately Predicts Women's Cardiovascular Disease Risk
AI analysis of mammogram images plus age predicts major cardiovascular disease risk as effectively as traditional tools.

Major Study Reveals Barriers to Implementing AI Chest Diagnostics in NHS Hospitals
A UCL-led study identifies significant challenges in deploying AI tools for chest diagnostics across NHS hospitals in England.

AI Model Enhances Prediction of Infection Risks from Oral Mucositis in Stem Cell Transplant Patients
Researchers developed an explainable AI tool that accurately predicts infection risks related to oral mucositis in hematopoietic stem cell transplant patients.